精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4$\sqrt{3}$,该椭圆的离心率为$\frac{{\sqrt{6}}}{3}$,以M(-3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)若A,B两点关于原点对称,求圆M的方程;
(3)若点A的坐标为(0,2),求△ABM的面积.

分析 (1)由题意求出a=2$\sqrt{3}$,结合椭圆离心率求得c,再由隐含条件求得b,则椭圆C的方程可求;
(2)由A,B两点关于原点对称,可知O是AB的中点,结合垂径定理可知MO⊥AB,进一步得到直线MO的斜率,得到直线AB的斜率,则直线AB的方程可求,联立直线方程和椭圆方程,求出A的坐标由勾股定理得圆的半径,则圆M的方程可求;
(3)由题意知直线AB的斜率存在,设直线AB的方程为y=kx+2,联立直线方程和椭圆方程,化为关于x的一元二次方程,求得B的坐标,进一步得线段AB的中点E的坐标,求得直线ME的斜率,结合题意列式求得AB的斜率,得到直线AB的方程为y=x+2,求出|AB|,由点到直线的距离公式求得点M到直线AB的距离,代入△ABM的面积公式得答案.

解答 解:(1)由题意可知2a=4$\sqrt{3}$,即a=2$\sqrt{3}$,又$e=\frac{c}{a}=\frac{{\sqrt{6}}}{3}$,则$c=2\sqrt{2}$,
∴b2=${a}^{2}-{c}^{2}=(2\sqrt{3})^{2}-(2\sqrt{2})^{2}=4$,
即椭圆C的方程为$\frac{{x_{\;}^2}}{12}+\frac{{y_{\;}^2}}{4}=1$;
(2)∵A,B两点关于原点对称,∴O是AB的中点,
由垂径定理可知MO⊥AB,又M(-3,2),∴直线MO的斜率为-$\frac{2}{3}$,
故直线AB的斜率为$\frac{3}{2}$,则直线AB的方程为y=$\frac{3}{2}$x,
联立$\left\{\begin{array}{l}\frac{{x_{\;}^2}}{12}+\frac{{y_{\;}^2}}{4}=1\\ y=\frac{3}{2}x\end{array}\right.$,解得$x_A^2=\frac{48}{31},y_A^2=\frac{108}{31}$,
由勾股定理得r2=MA2=MO2+OA2=9+4+$\frac{48}{31}+\frac{108}{31}=\frac{559}{31}$,
∴圆M的方程为(x+3)2+(y-2)2=$\frac{559}{31}$;
(3)由题意知直线AB的斜率存在,设直线AB的方程为y=kx+2,
联立$\left\{\begin{array}{l}\frac{x^2}{12}+\frac{y^2}{4}=1\\ y=kx+2\end{array}\right.$,得(1+3k2)x2+12kx=0,
则B($-\frac{12k}{{1+3{k^2}}},\frac{{2-6{k^2}}}{{1+3{k^2}}}$),线段AB的中点为E($-\frac{6k}{{1+3{k^2}}},\frac{2}{{1+3{k^2}}}$),
直线ME的斜率为$\frac{{\frac{2}{{1+3{k^2}}}-2}}{{-\frac{6k}{{1+3{k^2}}}-(-3)}}=\frac{{-2{k^2}}}{{3{k^2}-2k+1}}$,
∵AB⊥ME,∴$\frac{{-2{k^2}}}{{3{k^2}-2k+1}}$•k=-1,
∴2k3-3k2+2k-1=0,即(k-1)(2k2-k+1)=0,解得k=1,
∴直线AB的方程为y=x+2,
又B(-3,-1),∴|AB|=3$\sqrt{2}$,
而点M到直线AB的距离为$\frac{{3\sqrt{2}}}{2}$,
故△ABM的面积为$\frac{1}{2}×3\sqrt{2}×\frac{{3\sqrt{2}}}{2}=\frac{9}{2}$.

点评 本题考查椭圆的简单性质,是直线与圆、圆锥曲线的综合题,训练了直线与圆锥曲线位置关系的应用,考查计算能力,属有一定难度题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.指出由正弦曲线y=sinx经过怎样的步骤可以得到正弦型曲线y=$\frac{1}{3}$sin(4x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.椭圆$\frac{x^2}{36}$+$\frac{y^2}{16}$=1上一点M到一个焦点的距离是5,则它到另一个焦点的距离是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$({1,\frac{{\sqrt{2}}}{2}})$,离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)已知直线l1过椭圆C的右焦点F2交C于 M,N两点,点Q为直线l2:x=2上的点,且F2Q⊥l1,记直线MN与直线 OQ(O为原点)的交点为K,证明:MK=NK.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程;
(3)试预测加工10个零件需要多少时间?(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图:Rt△ABC中,∠ABC=90°,AB=BC.以AB为直径的⊙O交OC于D,AD的延长线交BC于E,过点D作⊙O的切线DF交BC于F,连OF.⊙C切⊙O于点D,交BC于G.
(1)求证:OF∥AE.
(2)求$\frac{DE}{AD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于任意的a∈(1,+∞),函数f(x)=ax-2+1的图象恒过点(2,2).(写出点的坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知,椭圆C:$\frac{{y}^{2}}{{m}^{2}}$+$\frac{{x}^{2}}{{n}^{2}}$=1(m>n>0)短轴长是1,离心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F (-$\sqrt{3}$,0)的直线交椭圆C于点M,N,G($\sqrt{3}$,0),求△GMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$g(x)=\frac{1}{3}{x^3}+x-m+\frac{m}{x}(m>0)$是[1,∞]上的增函数.当实数m取最大值时,若存在点Q,使得过Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为(  )
A.(0,-3)B.(0,3)C.(0,-2)D.(0,2)

查看答案和解析>>

同步练习册答案