【题目】函数f(x)的图象如图所示,曲线BCD为抛物线的一部分.
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范围.
【答案】(1) (2)或(3)-1<x<1
【解析】试题分析:
(Ⅰ)分段求解可得一次函数的解析式为:y=3x+3,二次函数的解析式为:y=x2-4x+3,即函数的解析式为分段函数: ;
(Ⅱ)结合(1)中函数的解析式分类讨论可得或;
(Ⅲ)由题意结合函数的性质分类讨论可得不等式f(x)>f(2-x)的解集为-1<x<1.
试题解析:
( I)当-1≤x≤0时,函数图象为直线且过点(-1,0)(0,3),直线斜率为k=3,
所以y=3x+3;
当0<x≤3时,函数图象为抛物线,设函数解析式为y=a(x-1)(x-3),
当x=0时,y=3a=3,解得a=1,所以y=(x-1)(x-3)=x2-4x+3,
所以.
(II)当x∈[-1,0],令3x+3=1,解得;
当x∈(0,3],令x2-4x+3=1,解得,
因为0<x≤3,所以,
所以或;
( III)当x=-1或x=3时,f(x)=f(2-x)=0,
当-1<x<0时,2<2-x<3,由图象可知f(x)>0,f(2-x)<0,
所以f(x)>f(2-x)恒成立;
当0≤x≤2时,0≤2-x≤2,f(x)在[0,2]上单调递减,
所以当x<2-x,即x<1时f(x)>f(2-x),所以0≤x<1;
当2<x<3时,-1<2-x<0,此时f(x)<0,f(2-x)>0不合题意;
所以x的取值范围为-1<x<1
科目:高中数学 来源: 题型:
【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求证:平面EBC⊥平面EBD;
(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,以原点为圆心的两个同心圆,其中,大圆的半径为 ,小圆的半径为,点为大圆上一动点,连接,与小圆交于点,过点作轴的垂线,垂足为,过点作直线的垂线,垂足为,点,记.
(1)求点的坐标(用含有的式子表示),并写出点的轨迹方程,指出点的轨迹是什么曲线;
(2)设点的轨迹为,点分别是曲线上的两个动点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市某水产养殖户进行小龙虾销售,已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价(元/千克)与时间第(天)之间的函数关系为:
,日销售量(千克)与时间第(天)之间的函数关系如图所示:
(1)求日销售量与时间的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠元给村里的特困户,在这前40天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为的直线n交l于点A, 交⊙M于另一点B,且AO=OB=2.
(1)求⊙M和抛物线C的方程;
(2)若P为抛物线C上的动点,求的最小值;
(3)过l上的动点Q向⊙M作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com