精英家教网 > 高中数学 > 题目详情

【题目】函数fx)的图象如图所示,曲线BCD为抛物线的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

(Ⅲ)若fx)>f(2-x),求x的取值范围.

【答案】(1) (2)(3)-1<x<1

【解析】试题分析:

()分段求解可得一次函数的解析式为:y=3x+3,二次函数的解析式为:y=x2-4x+3,即函数的解析式为分段函数:

()结合(1)中函数的解析式分类讨论可得

()由题意结合函数的性质分类讨论可得不等式fx)>f2-x)的解集为-1x1.

试题解析:

I)当-1≤x≤0时,函数图象为直线且过点(-10)(03),直线斜率为k=3

所以y=3x+3

0x≤3时,函数图象为抛物线,设函数解析式为y=ax-1)(x-3),

x=0时,y=3a=3,解得a=1,所以y=x-1)(x-3=x2-4x+3

所以

II)当x[-10],令3x+3=1,解得

x03],令x2-4x+3=1,解得

因为0x≤3,所以

所以

III)当x=-1x=3时,fx=f2-x=0

-1x0时,22-x3,由图象可知fx)>0f2-x)<0

所以fx)>f2-x)恒成立;

0≤x≤2时,0≤2-x≤2fx)在[02]上单调递减,

所以当x2-x,即x1fx)>f2-x),所以0≤x1

2x3时,-12-x0,此时fx)<0f2-x)>0不合题意;

所以x的取值范围为-1x1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)当时,解不等式

(2)若恒成立,求的取值范围;

(3)若关于的方程在区间内的解恰有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为

(Ⅰ)请将上述列联表补充完整;

(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )满足:①;②.

(1)求的值;

(2)若对任意的实数,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以原点为圆心的两个同心圆,其中,大圆的半径为 ,小圆的半径为,点为大圆上一动点,连接,与小圆交于点,过点轴的垂线,垂足为,过点作直线的垂线,垂足为,点,记.

(1)求点的坐标(用含有的式子表示),并写出点的轨迹方程,指出点的轨迹是什么曲线;

(2)设点的轨迹为,点分别是曲线上的两个动点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市某水产养殖户进行小龙虾销售,已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价(元/千克)与时间第(天)之间的函数关系为:

,日销售量(千克)与时间第(天)之间的函数关系如图所示:

(1)求日销售量与时间的函数关系式?

(2)哪一天的日销售利润最大?最大利润是多少?

(3)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠给村里的特困户,在这前40天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为的直线nl于点A, 交⊙M于另一点B,且AOOB=2.

(1)求⊙M和抛物线C的方程;

(2)若P为抛物线C上的动点,求的最小值;

(3)过l上的动点Q向⊙M作切线,切点为ST,求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数存在两个极值点.

(Ⅰ)求实数a的取值范围;

(Ⅱ)设分别是的两个极值点且,证明:

查看答案和解析>>

同步练习册答案