已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点(4,-)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)
(1) .(2)。
解析试题分析:(1)根据离心率为,可知双曲线为等轴双曲线,可设双曲线的方程为,再根据它过点(4,-)代入双曲线方程求出参数值,方程确定.
(2)根据点M(3,m)在双曲线上,可求出m值,然后求出,从而得到.
(3)因为N(3,1)为弦AB的中点,可利用点差法求得直线的斜率,进而写出点斜式方程.
(1) ∵离心率为,∴双曲线为等轴双曲线.∵双曲线的中心在原点,焦点在坐标轴上∴设双曲线的方程为,,
∵点(4,-)在双曲线上∴,∴双曲线的方程为,.(2)∵M(3,m)在双曲线上,∴,∵,,∴
∴∴.(3)∵点N(3,1)恰好是弦AB的中点∴有点差法易得,∴直线AB的方程为
∴
考点:双曲线的方程及和性质,直线与双曲线的位置关系.
点评:当知道弦中点时,可利用点差法求得弦所在直线的斜率,写出点斜式方程再化成一般式方程即可.
科目:高中数学 来源: 题型:解答题
如图,已知:椭圆的中心为,长轴的两个端点为,右焦点为,.若椭圆经过点,在上的射影为,且△的面积为5.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知圆:=1,直线=1,试证明:当点在椭圆上
运动时,直线与圆恒相交;并求直线被圆截得的弦长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
点P是圆上的一个动点,过点P作PD垂直于轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为的直线过点.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com