精英家教网 > 高中数学 > 题目详情

【题目】要制作一个如图的框架(单位:米).要求所围成的总面积为19.5(),其中是一个矩形, 是一个等腰梯形,梯形高,设米, 米.

(1)求关于的表达式;

(2)如何设计的长度,才能使所用材料最少?

【答案】1yx2AB3mBC4m

【解析】

(1)如图,在等腰梯形CDEF中,DH是高.

依题意:DHABxEH×xx

xy xxyx2∴yx.

∵x0y0x0,解之得0x.

所求表达式为yx.

(2)Rt△DEH中,∵tan∠FED∴sin∠FED

∴DEx

∴l(2x2y)x2y6xx6xx≥226

当且仅当x,即x3时取等号,

此时yx4

∴AB3mBC4m时,能使整个框架所用材料最少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,,点BAC上的射影为D,则三棱锥体积的最大值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于曲线上任意点处的切线,总存在上处的切线,使得,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,侧面底面是边长为2的正三角形底面是菱形,点的中点

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽数之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了明天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

从这5天中任选2天,记发芽的种子数分别为,求事件“君不小于25”的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5填中的另三天的数据,求出关于的线性回归方程,.

(参考公式:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(1)若,求曲线的直角坐标方程以及直线的极坐标方程;

(2)设点,曲线与直线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电动摩托车的续航里程,是指电动摩托车在蓄电池满电量的情况下一次能行驶的最大距离.为了解AB两个不同型号电动摩托车的续航里程,现从某卖场库存电动摩托车中随机抽取AB两个型号的电动摩托车各5台,在相同条件下进行测试,统计结果如下:

电动摩托车编号

1

2

3

4

5

A型续航里程(km

120

125

122

124

124

B型续航里程(km

118

123

127

120

a

已知AB两个型号被测试电动摩托车续航里程的平均值相等.

1)求a的值;

2)求A型号被测试电动摩托车续航里程标准差的大小;

3)从被测试的电动摩托车中随机抽取AB型号电动摩托车各1台,求至少有1台的续航里程超过122km的概率.

(注:n个数据,的方差,其中为数据的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点到抛物线Cy2=2px准线的距离为2

(Ⅰ)求C的方程及焦点F的坐标;

(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点AB,直线PAPB,分别交x轴于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校要从甲、乙两名同学中选择一人参加该市组织的数学竞赛,已知甲、乙两名同学最近7次模拟竞赛的数学成绩(满分100分)如下:

:79818384859093

乙:75788284909294.

1)完成答题卡中的茎叶图;

2)分别计算甲、乙两名同学最近7次模拟竞赛成绩的平均数与方差,并由此判断该校应选择哪位同学参加该市组织的数学竞赛.

查看答案和解析>>

同步练习册答案