精英家教网 > 高中数学 > 题目详情
已知集合A={1,2},B={4,5,6},f:A→B为集合A到集合B的一个函数,那么该函数的值域C的不同情况有( )种.
A.2
B.3
C.6
D.7
【答案】分析:定义域相同时,函数不同其定义域必不同,故本题求函数值域C的不同情况的问题可以转化为求函数有多少种不同情况,可根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,两类进行研究.
解答:解:由函数的定义知,此函数可以分为二类来进行研究
若函数的是二对一的对应,则值域为{4}、{5}、{6}三种情况
若函数是一对一的对应,{4,5}、{5,6}、{4,6}三种情况
综上知,函数的值域C的不同情况有6种
故选C.
点评:本题考点是映射,考查函数的概念,函数的定义,由于函数是一个一对一或者是多对一的对应,本题解决值域个数的问题时,采取了分类讨论的方法,本题考查函数的基本概念与数学的基本思想方法,是一道偏重于理解的好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知集合A={1,2},集合B=Φ,则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

1、已知集合A={1,2,3,4},B={2,4,6},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B=
{1,2,4,6}
{1,2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南通二模)已知集合A={1,2,3},B={-1,0,1},则满足条件f(3)=f(1)+f(2)的映射f:A→B的个数是
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3,4,5},B={2,4,6},C=A∩B,则C的真子集共有(  )

查看答案和解析>>

同步练习册答案