精英家教网 > 高中数学 > 题目详情
如图,直角梯形ABCD中,AD=3,AB=4,BC=
3
,曲线DE上任一点到A、B两点距离之和都相等.(E与AB在一条直线上)
(1)适当建立直角坐标系,求曲线DE的方程;
(2)过C点能否作一条直线与曲线DE相交且以C为中点的弦?如果不能,请说明理由;如果能,请求出该弦所在直线的方程.
分析:(1)建立平面直角坐标系,利用曲线的方程这一概念求其动点的轨迹方程,要注意求解方程之后要有题意去排杂;
(2)利用假设的思想,设出变量,存在建立方程求解,不存在会产生矛盾及可求解.
解答:解:(1)取AB中点O为原点,AB所在直线为x轴建立直角坐标系,

则A(-2,0),B(2,0),C(2,
3
),D(-2,3).
由题意,曲线DE为以A、B为焦点的一段椭圆弧.
由于a=
1
2
(|AD|+|BD|)=4
,c=2,b2=12
所以曲线DE的方程为
x2
16
+
y2
12
=1(-2≤x≤4,y≥0)

(2)设这样的弦存在,其方程y-
3
=k(x-2),即y=k(x-2)+
3
,将其代入椭圆方程
消去y得(3+4k2)x2+(8
3
k-16k2)x+16k2-16
3
k-36=0
设弦的端点为M(x1,y1),N(x2,y2),则由
x1+x2
2
=2,知x1+x2=4,
∴-
8
3
k-16k2
3+4k2
=4,解得k=-
3
2

∴弦MN所在直线方程为y=-
3
2
x+2
3
,验证得知,这时M(0,2
3
2
),N(4,0)适合条件.
故这样的直线存在,其方程为y=-
3
2
x+2
3
点评:本题考查轨迹方程,考查直线与曲线的位置关系,假设存在,建立方程求解或找矛盾是这类问题常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2014•宜宾一模)如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的
12
.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=AB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省南昌市高三第二次模拟测试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD =2AE =2AB = 4AF= 4,将四边形EFCD沿EF折起使AE=AD.

(1)求证:AF∥平面CBD;

(2)求平面CBD与平面ABFE夹角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2013年广东省惠州市高考数学一模试卷(文科)(解析版) 题型:解答题

如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:2012年宁夏银川市贺兰一中高考数学一模试卷(理科)(解析版) 题型:解答题

如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=PB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步练习册答案