精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系xoy中,已知曲线C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t为参数)与曲线C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ为参数,且a>0)有一个公共点在x轴上,则实数a=4.

分析 求出曲线C1的普通方程为x+2y-4=0,曲线C2的直角坐标方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,由曲线C1与曲线C2有一个公共点在x轴上,得在x+2y-4=0上,y=0时,x=4,从而曲线C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1过点(4,0),由此能求出结果.

解答 解:∵曲线C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t为参数)
∴曲线C1的普通方程为x+2y-4=0,
∵曲线C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ为参数,且a>0),
∴曲线C2的直角坐标方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,
联立$\left\{\begin{array}{l}{x+2y-4=0}\\{\frac{{x}^{2}}{a}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,
∵曲线C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t为参数)与曲线C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ为参数,且a>0)有一个公共点在x轴上,
在x+2y-4=0上,y=0时,x=4,
∴曲线C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1过点(4,0),
∵a>0,∴a=4.
故答案为:4.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意参数方程、普通方程、直角坐标方程、极坐标方程的互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.给出函数①y=x3,②y=x4+1,③y=|x|,④y=$\sqrt{x}$,其中在x=0处取得极值的函数是②③(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设直线l与抛物线y2=4x相交于A、B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条.则r的取值范围是2<r<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数集A={a1,a2,a3,a4,a5}(0≤a1<a2<a3<a4<a5)具有性质p:对任意i,j∈Z,其中1≤i≤j≤5,aj+ai与aj-ai两数中至少有一个属于A,若a5=60,则a1=0,a3=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知i是虚数单位,集合A={z|z=in,n∈N*},则A的子集个数有(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t为参数),曲线C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),直线C3:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t为参数).
(1)将C1,C2,C3的方程化为普通方程,并说明它们分别代表什么曲线;
(2)Q为曲线C2上的动点,求Q到直线C3距离的最小值和最大值;
(3)若曲线C1上的点P对应的参数为t=$\frac{π}{2}$,Q为曲线C2上的动点,求PQ中点M到直线C3距离的最小值;
(4)已知点P(x,y)是C1上的动点,求2x+y的取值范围;
(5)若x+y+a≥0恒成立,(x,y)在曲线C1上,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(3)=1.
(Ⅰ)集合A={x|f(x)>f(x-1)+2},B={x|f($\frac{(a+1)x-1}{x+1}$)>0},且满足A∩B=∅,求正实数a的取值范围;
(Ⅱ)设a<b,比较f($\frac{{e}^{a}+{e}^{b}}{2}$)与f($\frac{{e}^{b}-{e}^{a}}{b-a}$)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$y=-\sqrt{3}x+1$的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值.即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米--75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区今年9月每天的PM2.5监测数据中,按系统抽样方法抽取了某6天的数据作为样本,其监测值如茎叶图所示.
(l)根据样本数据估计今年9月份该市区每天PM2.5的平均值和方差;
(2)从所抽样的6天中任意抽取三天,记ξ表示抽取的三天中空气质量为二级的天数,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案