精英家教网 > 高中数学 > 题目详情

【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了名女性或名男性,根据调研结果得到如图所示的等高条形图.

(1)完成下列 列联表:

喜欢旅游

不喜欢旅游

估计

女性

男性

合计

(2)能否在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.

附:

参考公式:

,其中

【答案】(1)答案见解析;(2) 不能在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.

【解析】试题分析:

(1)结合所给的数据可得喜欢旅游的女性人数为,不喜欢旅游的女性人数为;喜欢旅游和不喜欢旅游的男性人数均为.据此即可求得列联表;

(2)结合(1)的结论计算可得的观测值不能在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.

试题解析:

(1)由等高条形图得:

喜欢旅游的女性人数为,不喜欢旅游的女性人数为;喜欢旅游和不喜欢旅游的男性人数均为.则对应的列联表为:

喜欢旅游

不喜欢旅游

估计

女性

男性

合计

(2)的观测值不能在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班同学利用寒假在三个小区进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低碳族,否则称为非低碳族,这两族人数占各自小区总人数的比例如下:

A小区

低碳族

非低碳族

比例

B小区

低碳族

非低碳族

比例

C小区

低碳族

非低碳族

比例

1ABC三个社区中各选一人,求恰好有2人是低碳族的概率;

2B小区中随机选择20户,从中抽取的3户中非低碳族数量为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列的项数均为,则将数列的距离定义为.

(1)求数列1,3,5,6和数列2,3,10,7的距离.

(2)记为满足递推关系的所有数列的集合,数列中的两个元素,且项数均为.若 ,数列的距离小于2016,求的最大值.

(3)记是所有7项数列(其中 )的集合, ,且中的任何两个元素的距离大于或等于3.求证: 中的元素个数小于或等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 ,且存在区间,使在区间上具有相同的单调性,求的取值范围;

(2)若 对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图和地区用户满意度评分的频数分布表.

地区用户满意度评分的频率分布直方图

地区用户满意度评分的频数分布表

满意度评分分组

频数

2

8

14

10

6

(1)在答题卡上作出地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);

(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

估计哪个地区的满意度等级为不满意的概率大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,给出四个结论:

①函数是最小正周期为的奇函数;

②函数的图像的一条对称轴是

③函数图像的一个对称中心是

④函数的递增区间为.则正确结论的个数为( )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)

无意愿

有意愿

总计

40

5

总计

25

80

(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;

(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.

附参考公式及数据: ,其中.

0.40

0.25

0.10

0.010

0.005

0.001

0.708

1.323

2.706

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案