精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为的直线与椭圆交于两点是以为直角顶点的等腰直角三角形则椭圆的离心率为__________

【答案】

【解析】分析:设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,再由椭圆的定义和周长的求法,可得m,再由勾股定理,可得a,c的方程,求得,开方得答案.

详解:如图,设|F1F2|=2c,|AF1|=m,

△ABF1构成以A为直角顶点的等腰直角三角形,

|AB|=|AF1|=m,|BF1|=m,

由椭圆的定义可得△ABF1的周长为4a,

即有4a=2m+m,即m=2(2﹣)a,

|AF2|=2a﹣m=(2﹣2)a,

在直角三角形AF1F2中,

|F1F2|2=|AF1|2+|AF2|2

即4c2=4(2﹣2a2+4(﹣1)2a2

∴c2=(9﹣6)a2

则e2==9﹣6=

∴e=

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论的单调性;

(2)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:

(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(Ⅲ)若规定:75(包含75分)分以上为良好,90分(包含90分)以上为优秀,要从分数在良好以上的试卷中任取两份分析学生失分情况,设在抽取的试卷中,分数为优秀的试卷份数为X,求X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣3|+|x﹣4|.
(1)求函数 的定义域;
(2)若存在实数x满足f(x)≤ax﹣1,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某市高三教学质量检测中,全市共有名学生参加了本次考试,其中示范性高中参加考试学生人数为人,非示范性高中参加考试学生人数为人.现从所有参加考试的学生中随机抽取人,作检测成绩数据分析.

(1)设计合理的抽样方案(说明抽样方法和样本构成即可);

(2)依据人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:

(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(Ⅲ)若规定:75(包含75分)分以上为良好,90分(包含90分)以上为优秀,要从分数在良好以上的试卷中任取两份分析学生失分情况,设在抽取的试卷中,分数为优秀的试卷份数为X,求X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=4y的焦点为F,斜率为k的直线l经过点F,若抛物线C上存在四个点到直线l的距离为2,则k的取值范围是(
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1,
C.(﹣
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱柱中,,则与平面所成角的正弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=的定义域为R.

(1)a的取值范围;

(2)若函数f(x)的最小值为,解关于x的不等式x2-x-a2-a<0.

查看答案和解析>>

同步练习册答案