精英家教网 > 高中数学 > 题目详情

【题目】平面内两定点,动点,满足,动点的轨迹为曲线,给出下列五个命题:

①存在,使曲线过坐标原点;

②对于任意,曲线轴有三个交点;

③曲线关于轴对称,但不关于轴对称;

④若三点不共线,则周长最小值为

⑤曲线上与不共线的任意一点关于原点对称的点为,则四边形的面积不大于.

其中真命题的序号是__________(填上所有正确命题的序号).

【答案】①④⑤

【解析】 平面内两定点,动点满足,
,
(0,0)代入,可得m=4,所以①正确;
②令y=0,可得 ,所以对于任意m,曲线E与x轴有三个交点不正确;
③曲线E关于y轴对称,关于x轴对称;故不正确;
④若P、M、N三点不共线, ,所以周长的最小值为正确;

⑤曲线E上与M、N不共线的任意一点G关于原点对称的点为H,则四边形GMHN的面积为 ,四边形GMHN的面积最大为不大于m,正确.
因此,本题正确答案是:①④⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出以下命题:

(1)若,则为真,为假,为真

(2)“”是“曲线表示椭圆”的充要条件

(3)命题“若,则”的否命题为:“若,则

(4)如果将一组数据中的每一个数都加上同一个非零常数,那么这组数据的平均数和方差都改变;

则正确命题有( )个

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,A、B、C分别为三边a,b,c所对的角。若,且a+c的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:

测试指标

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

产品A

8

12

40

32

8

产品B

7

18

40

29

6


(1)试分别估计产品A,产品B为正品的概率;
(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:
方案一 如图1,围成扇形养殖区OPQ,其中 =l;
方案二 如图2,围成三角形养殖区OCD,其中CD=l;

(1)求方案一中养殖区的面积S1
(2)求证:方案二中养殖区的最大面积S2=
(3)为使养殖区的面积最大,应选择何种方案?并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.

(1){an}的通项公式;

(2)a1+a4+a7+…+a3n2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.

(1)求第n年初M的价值an的表达式;

(2)An.An大于80万元,则M继续使用,否则须在第n年初对M更新.证明:须在第9年初对M更新.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a>0).
(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上的动点,点QNP上,点GMP上,且满足.

I)求点G的轨迹C的方程

II)过点(20)作直线,与曲线C交于AB两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程若不存在,试说明理由.

查看答案和解析>>

同步练习册答案