精英家教网 > 高中数学 > 题目详情

在已知各项均为正数的等比数列{an}中,lg(a3a8a13)6,则a1a15的值为

[  ]
A.

10000

B.

1000

C.

100

D.

10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知各项均为正数的等比数列{an}的前n项和为Sn,a1=3,S3=39.
(1)求数列{an}通项公式;
(2)若在an与an+1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:
1
d1
+
1
d2
+
+
1
dn
5
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列﹛an﹜,对于任意正整数n,点(an,sn)在曲线y=
1
2
(x2+x)

(1)求证:数列﹛an﹜是等差数列;
(2)若数列﹛bn﹜满足bn=
1
anan+2
,求数列﹛bn﹜的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,函数f(x)=
1
2
px2
一(p+q)x+qlnx(其中p,q均为常数,且p>q>0),当x=a1时,函数f(x)取得极小值,点(an,2Sn)(n∈N*)均在函数y=2px2-
q
x
+f'(x)+q的图象上.(其中f'(x)是函数f(x)的导函数)
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)记bn=
4Sn
n+3
qn
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐州模拟)已知各项均为正数的等比数列{an}的公比为q,且0<q<
1
2

(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(aK+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-log an+1
2
+1),Sn=b1+b2+…+bn,Tn=S1+S2+…+Sn,试用S2011 表示T2011

查看答案和解析>>

同步练习册答案