精英家教网 > 高中数学 > 题目详情
某圆锥曲线C是椭圆或双曲线,其中心为原点,对称轴为坐标轴,且过,B(,-),则
A.曲线C可以是椭圆也可以是双曲线B.曲线C一定是双曲线
C.曲线C一定是椭圆D.这样的曲线不存在
B.

因为,所以,B(,-)不可能在一椭圆上。
设两点所在的圆锥曲线为双曲线,由,B(,-)在双曲线上得:

解方程组得,所以得双曲线方程
故选择B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线lykx+(b>0)与圆O相切,并与双曲线相交于A、B两点.(Ⅰ)根据条件求出bk满足的关系式;(Ⅱ)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;(Ⅲ)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求·的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

垂直于x轴的直线交双曲线=1右支于M,N两点,A1,A2为双曲线的左右两个顶点,求直线A1M与A2N的交点P的轨迹方程,并指出轨迹的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知抛物线,椭圆经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆上的点,设的坐标为是已知正实数),求之间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知点是椭圆上的一点,,是椭圆的两个焦点,且满足.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)设点,是椭圆上的两点,直线,的倾斜角互补,试判断直线的斜率是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程(1-k)x2+(3-k2)y2=4表示椭圆,则k的取值范围是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知A、B两点的坐标分别是(-1,0)、(1,0),直线相交于点,且它们的斜率之积为,求点的轨迹方程并判断轨迹形状。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px(p>0)与双曲线有相同焦点F,点A是两曲线交点,且AF⊥x轴,则双曲线的离心率为                                                                   ( )
A.B.C.D.

查看答案和解析>>

同步练习册答案