【题目】已知数列中,,对任意的,,有.
(1)求数列的通项公式;
(2)设数列满足(,),
①求数列的前项和;
②设是正整数,若存在正数,对任意的正整数,当时,都有,求m的最大值.
【答案】(1)(2)答案不唯一,具体见解析(3)的最大值为5
【解析】
(1)先证明是首项,公差都为1的等差数列,再写出数列的通项;(2)①先求出,(),再分类讨论求出数列的前项和;②原题等价于存在正数,对任意的正整数(),当时,都有,再对分类讨论求出m的最大值.
(1)由,,令,
则,所以是首项,公差都为1的等差数列,
所以的通项公式为.
(2)由题意,
(),
两式相减得(),,(),
当时,满足上式,所以,().
所以①时,,;
②时,,
③且时,,.
(3)等价于,,
原题等价于存在正数,对任意的正整数(),当时,都有,
①当时,,与题目要求不符;
②当时,,与题目要求不符;
③当时,当时,上式取对数得,
等价于,
设,,则,
,,单调递增;
,,单调递减;
所以在取最大值,
又因为,所以;
设,,则,
设,,,时,所以在递减,
又,所以在恒成立,即在递减.
时,,存在;
时,,递减,
,,
所以的最大值为5.
科目:高中数学 来源: 题型:
【题目】第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种
A.60B.90C.120D.150
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种水箱用的“浮球”是由两个相同半球和一个圆柱筒组成,它的轴截面如图所示,已知半球的直径是,圆柱筒高,为增强该“浮球”的牢固性,给“浮球”内置一“双蝶形”防压卡,防压卡由金属材料杆,,,,,及焊接而成,其中,分别是圆柱上下底面的圆心,,,,均在“浮球”的内壁上,AC,BD通过“浮球”中心,且、均与圆柱的底面垂直.
(1)设与圆柱底面所成的角为,试用表示出防压卡中四边形的面积,并写出的取值范围;
(2)研究表明,四边形的面积越大,“浮球”防压性越强,求四边形面积取最大值时,点到圆柱上底面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面ABCD平面PAD,,,,,E是PD的中点.
证明:;
设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示.
(1) 求函数的解析式;
(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;
(3) 若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,是自然对数的底数).
(1)若函数在点处的切线方程为,试确定函数的单调区间;
(2)①当,时,若对于任意,都有恒成立,求实数的最小值;②当时,设函数,是否存在实数,使得?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.
(1)求曲线的极坐标方程;
(2)在曲线上取两点、于原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程(为参数).以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是,射线与圆的交点为,,与直线的交点为,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com