精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数f(x)在区间[0,+∞)是增函数,则下列关系正确的是(  )
分析:根据f(x)在[0,+∞)上是增函数,再根据3,1,2的大小关系,得到f(3),f(1),f(1)的大小关系,最后利用函数的奇偶性,即可得到答案.
解答:解:∵函数f(x)在区间[0,+∞)上单调递增,且3>2>1,
∴f(3)>f(2)>f(1),
∵函数为偶函数,
∴f(3)=f(-3),f(2)=f(-2),
∴f(-3)>f(-2)>f(1),
故选:C.
点评:本题考查函数的奇偶性与单调性的综合,解题的关键是熟练掌握函数的奇偶性与函数单调性的关系,从而研究出函数在定义域上的单调性,比较出函数值的大小,本解法巧妙利用函数的性质得出函数图象的变化规律,由此得出三个函数值的大小,规律性强,值得借鉴.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案