精英家教网 > 高中数学 > 题目详情
f(x)=(log
1
2
a)x
在R上为减函数,则a的取值范围是
1
2
<a<1
1
2
<a<1
分析:先利用指数函数的图象和性质:y=ax (0<a<1)为R上的减函数,得对数不等式,再利用对数函数的单调性解不等式即可
解答:解:∵f(x)=(log
1
2
a)x
在R上为减函数,
0<log
1
2
a<1

log
1
2
1<log
1
2
a<log
1
2
1
2

1
2
<a<1

故答案为
1
2
<a<1
点评:本题考查了指数函数的图象和性质,对数函数的单调性,解简单的对数不等式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义y=log1+xf(x,y),f(x,y)=(1+x)y(x>0,y>0)
(1)比较f(1,3)与f(2,2)的大小;
(2)若e<x<y,证明:f(x-1,y)>f(y-1,x);
(3)设g(x)=f(1,log2(x3+ax2+bx+1))的图象为曲线C,曲线C在x0处的切线斜率为k,若x0∈(1,1-a),且存在实数b,使得k=-4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
log
1-mx
x-1
a
为奇函数,g(x)=f(x)+loga(x-1)(ax+1)( a>1,且m≠1).
(1)求m值;
(2)求g(x)的定义域;
(3)若g(x)在[-
5
2
,-
3
2
]
上恒正,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x+a
1+2x
(a∈R)是R上的奇函数.
(Ⅰ)求a的值;
(Ⅱ)若m∈R+,且满足log
1+x
1-x
>log3
1+x
m
,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)若函数f(x)=log1-2ax在(0,+∞)上单调递减,则实数a的取值范围是
(0,
1
2
(0,
1
2

查看答案和解析>>

科目:高中数学 来源:湖南省岳阳市第一中学2012届高三上学期第四次月考数学理科试题 题型:013

已知函数f(x)=log1(x+1),若f(α)=1,α=

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

同步练习册答案