精英家教网 > 高中数学 > 题目详情
16.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=4,则x+2y最小值是(  )
A.5+2$\sqrt{2}$B.2C.8D.16

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=4,
则x+2y=(x+2y)$\frac{1}{4}(\frac{2}{x}+\frac{1}{y})$=$\frac{1}{4}$$(4+\frac{4y}{x}+\frac{x}{y})$$≥\frac{1}{4}$$(4+2\sqrt{\frac{4y}{x}•\frac{x}{y}})$=2,当且仅当x=2y=1时取等号.
∴x+2y最小值是2,
故选:B.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{{x}^{2}+4}{x}$(x>0)的最小值为(  )
A.2B.3C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足a1=2,an+1an=an-1,则a2016值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的通项公式是an=(-1)n-1(n-1),Sn是其前n项和,则S15=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A、B、C是半径为1的球面上三个定点,且AB=AC=BC=1,高为$\frac{{\sqrt{6}}}{2}$的三棱锥P-ABC的顶点P位于同一球面上,则动点P的轨迹所围成的平面区域的面积是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2.
(1)求证:CE⊥AD;
(2)求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点B(0,-1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=k(x+2)交椭圆于P、Q两点,若$\overrightarrow{BP}$•$\overrightarrow{BQ}$<0,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x3-3x,x∈[0,2],则函数f(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x的单调区间.

查看答案和解析>>

同步练习册答案