精英家教网 > 高中数学 > 题目详情

【题目】如图所示,曲线C由部分椭圆C1=1a>b>0,y≥0和部分抛物线C2:y=-x2+1y≤0连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为

1求a,b的值;

2过点B的直线l与C1,C2分别交于点P,QP,Q,AB中任意两点均不重合,若AP⊥AQ,求直线l

的方程

【答案】(1)(2)

【解析】

试题1结合图形在中,令,得,再联立 可得2由题易得点,由题知直线轴不重合也不垂直,可设其方程为,联立的方程,整理得,解得点的坐标为,结合图形知,再将代入的方程,得点的坐标为,再由,即得,求得方程

试题解析:1C2的方程中令y0可得b1,由a2c2b21aa,b1

21知,上半椭圆C1的方程为y22x22y0易知,直线lx轴不重合也不垂直,

设其方程为x=my+1 m0,并将其代入C1的方程,

整理得2m214my=0,故可解得点P的坐标为,显然,m<0

同理,将x=my+1 m0代入C2的方程,整理得m2y2y+2my0,得点Q的坐标为

APAQ=0

8m2 +2m0,解得m=-,符合m<0,故直线l的方程为4x+y40

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线 .

(1)求证:对,直线与圆总有两个不同的交点

(2)求弦的中点的轨迹方程,并说明其轨迹是什么曲线;

(3)是否存在实数,使得原上有四点到直线的距离为?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求证:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知相交于点,线段是圆的一条动弦,且,则的最小值是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,∠C=,,M,N分别是BC,AB的中点,将△BMN沿直线MN折起,使二面角B'-MN-B的大小为,则B'N与平面ABC所成角的正切值是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,及圆

1)求过点的圆的切线方程;

2)若过点的直线与圆相交,截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy22px(p0)的焦点F,直线y4y轴的交点为P,与抛物线C的交点为Q,且|QF|2|PQ|

(1)p的值;

(2)已知点T(t,-2)C上一点,MNC上异于点T的两点,且满足直线TM和直线TN的斜率之和为,证明直线MN恒过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴为正半轴为极轴建立极坐标系.已知曲线的极坐标方程为 ,直线与曲线相交于两点,直线过定点且倾斜角为交曲线两点.

(1)把曲线化成直角坐标方程,并求的值;

(2)若成等比数列,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设点(其中表示ab中的较大数)为两点的切比雪夫距离”.

1)若Q为直线上动点,求PQ两点切比雪夫距离的最小值;

2)定点,动点满足,请求出P点所在的曲线所围成图形的面积.

查看答案和解析>>

同步练习册答案