精英家教网 > 高中数学 > 题目详情
12.已知|$\overrightarrow{OA}$|=$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则$\overrightarrow{OA}$•$\overrightarrow{AB}$等于(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 |$\overrightarrow{OA}$|=$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,可设A($\sqrt{3}$,0),B(0,y)(y>0),再利用数量积运算性质即可得出.

解答 解:∵|$\overrightarrow{OA}$|=$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
∴可设A($\sqrt{3}$,0),B(0,y)(y>0),
$\overrightarrow{AB}$=$(-\sqrt{3},y)$.
则$\overrightarrow{OA}$•$\overrightarrow{AB}$=-3.
故选:A.

点评 本题考查了向量数量积运算性质、向量坐标运算,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.二次函数f(x)=x2-2x+2,x∈[-5,5].最小值是1,最大值是37.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,以ox为始边作角α与β(0<β<α<π),它们的终边 分别与单位圆相交于点A、B.已知点A的坐标为(-$\frac{3}{5}$,$\frac{4}{5}$).
 (1)求 $\frac{sinα+tan(π-α)}{2tan(\frac{3π}{2}-α)co{s}^{2}(\frac{3π}{2}-α)}$的值:
(2)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求sin(β+$\frac{11π}{2}$)sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2015年我国将加快阶梯水价的推行,原则是“保基本、建机制、促节约”,其中“保基本是指保证至少80%的居民用户用水价格不变,为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如图(单位:吨).
(1)从郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;
(2)设该城市郊区与城区的居民户数比为1:5,现将年人均用水量不超过30吨的用户定为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变,试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式$\frac{6{x}^{2}-x-1}{{x}^{2}+1}$<0的解集为(  )
A.{x|x$>-\frac{1}{3}$}B.{x|x$<\frac{1}{2}$}C.{x|-$\frac{1}{3}<x<\frac{1}{2}$}D.{x|x$<-\frac{1}{3}$或x$>\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,且,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2|$\overrightarrow{a}$|,则向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.甲、乙两门高射炮同时向一敌机开炮,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.8,敌机被击中的概率为0.92.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设p:1<x<2,q:2x>1,则p是q成立的充分不必要条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|x≤-2或x≥7},集合$B=\{\left.x\right|8<{(\frac{1}{2})^x}<16\}$,集合C={x|m+1≤x≤2m-1},
(1)求A∩B,A∪B;
(2)若A∪C=A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案