精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱中,分别是,的中点,.

(1)证明:平面

(2)求二面角的正弦值.

【答案】(1)详见解析(2)

【解析】

试题分析:)连接AC1交A1C于点F,由三角形中位线定理得BC1DF,由此能证明BC1平面A1CD)以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立空间直角坐标系C-xyz.分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的正弦值

试题解析:(1)证明:连接,交于点

的中点

的中点,连接

,因为平面平面

所以平面

(2)解:由,得

为坐标原点,轴、轴、轴建立如图的空间坐标系

,则

是平面的法向量,

,即

可取

同理,设是平面的法向量,则

可取

从而

即二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形, 底面 的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中,分别是的中点,

(1)求证:平面;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值为4|a|2,则a与b的夹角为(  )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a3 , a5 , a15成等比数列,若a1=3,Sn为数列an的前n项和,则anSn的最小值为(
A.0
B.﹣3
C.﹣20
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M(m,0)(m> )做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P( ,0),且 为定值.
(1)求椭圆E的方程;
(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1:axby+4=0,l2:(a1)x+y+b=0. 求满足下列条件的a,b值.

)l1l2且l1过点(3,1);

)l1l2且原点到这两直线的距离相等.

查看答案和解析>>

同步练习册答案