精英家教网 > 高中数学 > 题目详情

【题目】函数对任意都有,则称为在区间上的可控函数,区间称为函数可控区间,写出函数的一个可控区间是________.

【答案】的子集都可以

【解析】

,由可控函数的定义可得,上恒成立,运算即可得解.

:因为,所以,

由可控函数的定义可得上恒成立,

上恒成立,

则区间可为,

即函数的一个可控区间是,

故答案为: .

【点晴】

本题以函数的形式为背景,考查的是不等式的有关知识及推理判断的能力.结论的开放性和不确定性是本题的一大特色.解答时应充分依据题设条件,合理有效地利用好可控函数及可控区间等新信息和新定义,并以此为基础进行推理论证,从而写出满足题设条件的答案.解答本题时,借助绝对值不等式的性质进行巧妙推证,从而探寻出符合题设条件的一可控区间的区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,则下列关于函数的说法,不正确的是(

A.的图象关于对称

B.上有2个零点

C.在区间上单调递减

D.函数图象向右平移个单位,所得图像对应的函数为奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

1)求实数的取值范围;

2)若,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,称他们的公共边为“分割边”,则分割边条数的最小值为( )

A.33B.56C.64D.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.

1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?

2)若先投放2个单位的洗衣液,6分钟后投放个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求的最小值(精确到0.1,参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域是一切实数的函数,其图象是连续不断的,且存在常数)使得对任意实数都成立,则称是一个-伴随函数,有下列关于-伴随函数的结论:①是常数函数唯一一个-伴随函数;②-伴随函数至少有一个零点;③是一个-伴随函数;其中正确结论的个数(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:

A.所有黄桃均以20/千克收购;

B.低于350克的黄桃以5/个收购,高于或等于350克的以9/个收购.

请你通过计算为该村选择收益最好的方案.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)若,求处的切线方程;

2)若可上单调递增,求的取值范围;

3)求证:当在区间内存在唯一极大值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,GH分别为上的点,平面平面.

1)证明:平面平面

2)若,求二面角的大小.

查看答案和解析>>

同步练习册答案