精英家教网 > 高中数学 > 题目详情
6.函数y=lg(x-1)的定义域为(1,+∞).(用区间表示)

分析 根据对数函数的性质得到关于x的不等式,解出即可.

解答 解:由题意得:x-1>0,
解得:x>1,
故答案为:(1,+∞).

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.满足条件{(x.y)|$\sqrt{{(x-3)}^{2}{+y}^{2}}$-$\sqrt{{(x+3)}^{2}{+y}^{2}}$=6}的点p(x,y)的轨迹是射线,方程为y=0(x≤-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.建造一个容积为8m3、深2m的长方体无盖水池,池底任一边长度不得小于1m,如果池底和池壁的造价分别为120元/m2和80元/m2,总造价y(元)关于底面一边x(m)的函数解析式为f(x).
(1)求函数f(x)的解析式,并求出该函数的定义域;
(2)x取何值时,总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,tanA是以-4为第4项、4为第8项的等差数列{an}的公差,tanB是以$\frac{1}{3}$为第2项、9为第5项的等比数列{bn}的公比,则△ABC是(  )
A.钝角三角形B.等腰直角三角形C.锐角三角形D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.偶函数f(x)的定义域为R,且在(-∞,0)上是减函数,且f(-1)=M与f(a2-a+$\frac{5}{4}$)=N(a∈R)的大小(  )
A.M≤NB.M≥NC.M<ND.M>N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C与椭圆x2+37y2=37的焦点F1,F2相同,且椭圆C过点($\frac{5\sqrt{7}}{2}$,-6).
(1)求椭圆C的标准方程;
(2)若点P在椭圆C上,且∠F1PF2=$\frac{π}{3}$,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα和cosα是方程4x2+2$\sqrt{6}$x+m=0的两个实数根.
(1)求m的值;
(2)求sin3α-cos3α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆O,点A为圆O外一点,BC为圆O的直径,过A作圆O的割线交圆O于D,E两点,其满足BD=DE.
(1)求证:∠DOB=∠ECA;
(2)若AB=BO,BD=1,求四边形BDEC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.三棱锥P-ABC中△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥面 ABC,D、E分别为AB、PB的中点.
(1)求证AC⊥PD;
(2)求三棱锥P-CDE的体积.
(3)(理)求点P到面CDE的距离.

查看答案和解析>>

同步练习册答案