精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,左、右焦点分别为,过的直线交椭圆于两点.

(1)若以为直径的圆内切于圆,求椭圆的长轴长;

(2)当时,问在轴上是否存在定点,使得为定值?并说明理由.

【答案】(1) 椭圆长轴长为6 (2) 在轴存在定点,使得为定值

【解析】试题分析:(1)根据图形的几何特点得到两个圆相内切时,两个圆的圆心距等于两个圆的半径,进而得到参数值a=3;(2)联立直线和椭圆得到二次方程,根据韦达定理得到进而得到参数值.

解析:

(1)设的中点为,在三角形中,由中位线得:

.

当两个圆相内切时,两个圆的圆心距等于两个圆的半径,即

所以,椭圆长轴长为6.

(2)由已知,所以椭圆方程为.

当直线斜率存在时,设直线方程为.

,得

恒成立.

为定值

当直线斜率不存在时,不妨设

,为定值.

综上:在轴存在定点,使得为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且点到椭圆上任意一点的最大距离为3,椭圆的离心率为.

(1)求椭圆的标准方程;

(2)是否存在斜率为的直线与以线段为直径的圆相交于两点,与椭圆相交于,且?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年6月深圳地铁总公司对深圳地铁1号线30个站的工作人员的服务态度进行了满意度调查,其中世界之窗、白石洲、高新园、深大、桃园、大新6个站的得分情况如下:

地铁站

世界之窗

白石州

高新园

深大

桃园

大新

满意度得分

70

76

72

70

72

x

已知6个站的平均得分为75分.

(1)求大新站的满意度得分x,及这6个站满意度得分的标准差;

(2)从表中前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的圆心到直线的距离;

(2)设圆与直线交于点,若点的坐标为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:

数据分组

频数

3

8

9

12

10

5

3

(1)根据频数分布表,求该产品尺寸落在的概率;

(2)求这50件产品尺寸的样本平均数.(同一组中的数据用该组区间的中点值作代表);

(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经计算得.利用该正态分布,求.

附:(1)若随机变量服从正态分布,则

(2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程是:是参数,是常数).以为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)求的反函数的图象上点(1,0)处的切线方程;

Ⅱ)证明:曲线与曲线有唯一公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原理:“幂势既同,则积不容易.”这里的“幂”指水平截面的面积.“势”指高,这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。于是可把半径相等的半球(底面在下)和圆柱(圆柱高等于半径)放在同一水平面上,圆柱里再放一个半径和高都与圆柱相等的圆锥(锥尖朝下),考察圆柱里被圆锥截剩的立体,这样在同一高度用平行平面截得的半球截面和圆柱中剩余立体截得的截面面积相等,因此半球的体积等于圆柱中剩余立体的体积.设由椭圆所围成的平面图形绕轴旋转一周后,得一橄榄状的几何体(如图,称为“椭球体”),请类比以上所介绍的应用祖暅原理求球体体积的做法求这个椭球体的体积.其体积等于________.

查看答案和解析>>

同步练习册答案