【题目】已知函数.
讨论函数的极值点的个数;
若函数有两个极值点,,证明:.
【答案】(1)见解析 (2)见解析
【解析】
先求出函数的导函数,通过讨论a的范围确定导函数的符号,从而得出函数的单调区间,进而判断函数极值点个数;
由可知当且仅当时有极小值和极大值,且,是方程的两个正根,则,根据函数表示出,令,通过对求导即可证明结论.
解:函数,
,
,当时,,,
当时,,单调递减;
当时,,单调递增;
当时,有极小值;
当时,,故,
在上单调递减,故此时无极值;
当时,,方程有两个不等的正根,.
可得,.
则当及时,
,单调递减;
当时, ;单调递增;
在处有极小值,在处有极大值.
综上所述:当时,有1个极值点;
当时,没有极值点;
当时,有2个极值点.
由可知当且仅当时有极小值点
和极大值点,且,是方程的两个正根,
则,.
;
令,
;,
在上单调递减,故,
.
科目:高中数学 来源: 题型:
【题目】如图1,在正方形中,是的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.
图1 图2
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(α为参数)经过伸缩变换得到曲线C2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求C2的普通方程;
(2)设曲线C3的极坐标方程为,且曲线C3与曲线C2相交于M,N两点,点P(1,0),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有二元关系,已知曲线.
(1)若时,正方形的四个顶点均在曲线上,求正方形的面积;
(2)设曲线与轴的交点是,抛物线与轴的交点是,直线与曲线交于,直线与曲线交于,求证直线过定点,并求该定点的坐标;
(3)设曲线与轴的交点是,,可知动点在某确定的曲线上运动,曲线上与上述曲线在时共有4个交点,其坐标分别是、、、,集合的所有非空子集设为,将中的所有元素相加(若只有一个元素,则和是其自身)得到255个数,求所有正整数的值,使得是一个与变数及变数均无关的常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区名居民参加年国庆活动,他们的年龄在岁至岁之间,将年龄按、、、、分组,得到的频率分布直方图如图所示.
(1)求的值,并求该社区参加年国庆活动的居民的平均年龄(每个分组取中间值作代表);
(2)现从年龄在、的人员中按分层抽样的方法抽取人,再从这人中随机抽取人进行座谈,用表示参与座谈的居民的年龄在的人数,求的分布列和数学期望;
(3)若用样本的频率代替概率,用随机抽样的方法从该地岁至岁之间的市民中抽取名进行调查,其中有名市民的年龄在的概率为,当最大时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为,、、、为圆上点,,,,分别是以,,,为底边的等腰三角形,沿虚线剪开后,分别以,,,为折痕折起,,,,使得、、、重合,得到四棱锥.当该四棱锥体积取得最大值时,正方形的边长为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,若|FM|:|MN|=1:2,则实数a的值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对函数的性质进行研究,得出如下的结论:
函数在上单调递减,在上单调递增;
点是函数图象的一个对称中心;
函数图象关于直线对称;
存在常数,使对一切实数x均成立,
其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com