精英家教网 > 高中数学 > 题目详情

【题目】由中央电视台综合频道()和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了AB两个地区共100名观众,得到如下的列联表:

非常满意

满意

合计

A

30

y

B

x

z

合计

已知在被调查的100名观众中随机抽取1名,该观众是地区当中“非常满意”的观众的概率为0.35,且.请完成上述表格,并根据表格判断是否有95%的把握认为观众的满意程度与所在地区有关系?

附:参考公式:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】见解析

【解析】

根据条件解得,再根据卡方公式求K2,最后根据参考数据作判断.

解:由题意,得 ,所以 ,所以

因为 ,所以

非常满意

满意

合计

A

30

15

45

B

35

20

55

合计

65

35

100

K2的观测值

所以没有90%的把握认为观众的满意程度与所在地区有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,底面是边长为2的菱形, ,且平面.

1证明:平面平面

2若平面与平面的夹角为试求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·临川一中]海盗船是一种绕水平轴往复摆动的游乐项目,因其外形仿照古代海盗船而得名.现有甲、乙两游乐场统计了一天6个时间点参与海盗船游玩的游客数量,具体数据如表:

时间点

8

10

12

14

16

18

甲游乐场

10

3

12

6

12

20

乙游乐场

13

4

3

2

6

19

(1)从所给6个时间点中任选一个,求参与海盗船游玩的游客数量甲游乐场比乙游乐场少的概率;

(2)记甲、乙两游乐场6个时间点参与海盗船游玩的游客数量分别为),现从该6个时间点中任取2个,求恰有1个时间点满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面ABCD是边长为a的菱形,ABCDEF分别是CDPC的中点.

1)求证:平面平面PAB

2MPB上的动点,EM与平面PAB所成的最大角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,过点的直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为,记直线与曲线分别交于两点.

(1)求曲线的直角坐标方程;

(2)证明:成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面

1)求证:平面 平面;

2)若棱上存在一点,使得二面角的余弦值为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:

(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数

(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;

(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合ABR中两个子集,对于,定义: .①若;则对任意;②若对任意,则;③若对任意,则AB的关系为.上述命题正确的序号是______. (请填写所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆,把圆上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线,且倾斜角为,经过点的直线与曲线交于两点.

(1)当时,求曲线的普通方程与直线的参数方程;

(2)求点两点的距离之积的最小值.

查看答案和解析>>

同步练习册答案