精英家教网 > 高中数学 > 题目详情

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到列联表:

喜欢游泳

不喜欢游泳

合计

男生

40

女生

30

合计

100

且已知在100个人中随机抽取1人,抽到喜欢游泳的学生的概率为

1)请完成上面的列联表;

2)根据列联表的数据,是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由.

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】1)列联表见解析 2)有,说明见解析

【解析】

1)根据题意随机抽取1人喜欢游泳的概率为,喜欢游泳的人数为,即可列出列联表.

2)计算出观测值,利用独立性检验的思想即可求解.

解:(1)因为在100人中随机抽取1人喜欢游泳的概率为.所以喜欢游泳的人数为,所以列联表如下:

喜欢游泳

不喜欢游泳

合计

男生

40

10

50

女生

20

30

50

合计

60

40

100

2,所以有99.9%的把握认为喜欢游泳与性别有关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次53.5公里的自行车个人赛中,25名参赛手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为1-25号,再用系统抽样方法从中选取5人.已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为( )

A. 97 B. 96 C. 95 D. 98

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.

1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;

2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下表格.

i)请将表格补充完整;

短潜伏者

长潜伏者

合计

60岁及以上

90

60岁以下

140

合计

300

ii)研究发现,某药物对新冠病毒有一定的抑制作用,现需在样本中60岁以下的140名患者中按分层抽样方法抽取7人做I期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)斜率为的直线交椭圆两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,点上,且

1)求的值;

2)若直线经过点且与交于(异于)两点,证明:直线与直线的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极是中国古代的哲学术语,意为派生万物的本源.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太极图形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理.太极图形展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆的图象分割为两个对称的鱼形图案,图中的两个一黑一白的小圆通常称为“鱼眼”,已知小圆的半径均为,现在大圆内随机投放一点,则此点投放到“鱼眼”部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中,正确的题号是__________.

①函数的最值一定是极值;

②设:实数满足:实数满足,则的充分不必要条件;

③已知椭圆与双曲线的焦点重合,分别为的离心率,则,且

④一动圆过定点,且与已知圆相切,则动圆圆心的轨迹方程是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4/立方米收费,超出立方米的部分按10/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4/立方米, 至少定为多少?

2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与曲线分别交于两点,点的坐标为,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案