A. | 3x-4y+20=0 | B. | 3x-4y+20=0或x=4 | C. | 4x-3y+8=0 | D. | 4x-3y+8=0或x=4 |
分析 由圆的方程,可知圆心(0,0),r=5,圆心到弦的距离为4,若直线斜率不存在,则垂直x轴x=4,成立;若斜率存在,由圆心到直线距离d=$\frac{|-4k+8|}{\sqrt{{k}^{2}+1}}$=4,即可求得直线斜率,求得直线方程.
解答 解:圆心(0,0),r=5,圆心到弦的距离为4,
若直线斜率不存在,则垂直x轴
x=4,圆心到直线距离=|0-4|=4,成立;
若斜率存在
y-8=k(x-4)即:kx-y-4k+8=0
则圆心到直线距离d=$\frac{|-4k+8|}{\sqrt{{k}^{2}+1}}$=4,解得k=$\frac{3}{4}$,
综上:x=4和3x-4y+20=0,
故选B.
点评 本题主要考查直线与圆的位置关系,主要涉及了圆心距,弦半距及半径构成的直角三角形,直线的方程形式及其性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{-\frac{1}{2},\frac{1}{e}}]$ | B. | $({0,\frac{2}{e}}]$ | C. | $({-∞,0})∪[{\frac{2}{e},+∞})$ | D. | $({-∞,-\frac{1}{2}})∪[{\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com