精英家教网 > 高中数学 > 题目详情
5.若函数f(x)唯一的一个零点同时在区间(0,8)、(0,6)、(0,4)、(0,2)内,那么下列命题中正确的是(  )
A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(0,1)或(1,2)内有零点
C.函数f(x)在区间[2,8)内无零点D.函数f(x)在区间(1,8)内无零点

分析 由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,8)内无零点.其他不能确定.

解答 解:由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,8)内无零点.
C正确,
A不能确定,
B中零点可能为1,
D不能确定.
故选:C

点评 本题考查对函数零点的判定定理的理解,属基础知识的考查.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在圆x2+y2-4x-4y-2=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )
A.5$\sqrt{2}$B.10$\sqrt{2}$C.15$\sqrt{2}$D.20$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴,曲线C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C2:ρ=$\frac{1}{sin(θ+45°)}$;
(1)曲线C1,C2是否有公共点,为什么?
(2)将曲线C1向右移动m个单位,使得C1与C2是交于A,B两点,|AB|=$\sqrt{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“若实数a满足a≤3,则a2<9”的否命题是真命题(填“真”、“假”之一).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设sin2α=-sinα,$α∈(\frac{π}{2},π)$,则tan2α的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex(-x2+b)在点P(0,f(0))处的切线方程为y=3x+3
(1)求函数f(x)的单调递减区间;
(2)当x∈(-1,+∞)时,f(x)+x2ex+2xex≥m(x+1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一个几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,则这个几何体的体积为(  )
A.B.C.D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点O为直线l外任一点,点A、B、C都在直线l上,且$\overrightarrow{OC}=3\overrightarrow{OA}+t\overrightarrow{OB}$,则实数t=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A、B、C所对的边为a、b、c.已知sinB=bsinA.
(1)求边a;
(2)若A=$\frac{π}{3}$,求b+c的取值范围.

查看答案和解析>>

同步练习册答案