精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
. ⑵

试题分析:⑴因为,且,所以.  2分
所以.  4分
所以椭圆的方程为.  6分
⑵设点的坐标为,则
因为,所以直线的方程为.  8分
由于圆有公共点,所以 的距离小于或等于圆的半径
因为,所以,  10分
 .
又因为,所以.  12分
解得,又,∴.  14分
时,,所以   16分
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理,简化解题过程。利用函数观点,建立三角形面积的表达式,确定其最值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的对称中心为坐标原点,上焦点为,离心率.

(Ⅰ)求椭圆的方程;
(Ⅱ)设轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.

(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,上、下焦点分别为
向量.直线与椭圆交于两点,线段中点为
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线
与区域有公共点,试求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线的焦点重合, 则此椭圆方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆的左焦点,直线方程为,直线轴交于点,分别为椭圆的左右顶点,已知,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率为的直线交椭圆于两点,求三角形面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为, 点在椭圆上, 如果线段的中点轴的
正半轴上, 那么点的坐标是         

查看答案和解析>>

同步练习册答案