精英家教网 > 高中数学 > 题目详情

.(本题满分16分,其中第1小题4分,第2小题6分,第3小题6分,)

如图,已知椭圆,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(1)求椭圆和双曲线的标准方程;

(2)设直线的斜率分别为,证明

(3)是否存在常数,使得

恒成立?若存在,求的值;若不存在,请说明理由.

 

 

 

 

 

 

【答案】

 

解(1)由题意知,椭圆中,,得

,所以可解得,所以

所以椭圆的标准方程为

所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为

(2)设,则

因为点在双曲线上,所以

因此   即

(3)由于的方程为,将其代入椭圆方程得

由韦达定理得

    同理可得

    则,又

    ∴,

    即存在, 使恒成立.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题满分16分)两个数列{an},{bn},满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(参考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求证:{bn}为等差数列的充要条件是{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数是常数,且),对定义域内任意),恒有成立.

(1)求函数的解析式,并写出函数的定义域;

(2)求的取值范围,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)已知数列的前项和为,且.数列中,

 .(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②

查看答案和解析>>

科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)

已知函数

(1)判断并证明上的单调性;

(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;

(3)若上恒成立 , 求的取值范围.

 

查看答案和解析>>

同步练习册答案