精英家教网 > 高中数学 > 题目详情

设函数f(x)=(x-2)2+blnx,其中b为常数.
(Ⅰ)若函数f(x)在定义域上单调递增,求b的取值范围;
(Ⅱ)若b≤0,求函数f(x)的极值点;
(Ⅲ)当b=-6时,利用函数f(x)的性质证明:对任意大于1的正整数n,不等式数学公式恒成立.

解:(1)由题意知,f(x)的定义域为(0,+∞),
∴当 b>2时,f′(x)>0,函数f(x)在定义域(0,+∞)上单调递增;
(2)令

当b≤0时,∉(0,+∞)(舍去),
∈(0,+∞),
此时:f′(x),f(x)随x在定义域上的变化情况如下表:
由此表可知:∵b≤0时,f(x)有惟一极小值点
(3)由(2)可知当b=-6时,函数f(x)=(x-2)2-6lnx,此时f(x)有惟一极小值点:x=3,
且 x∈(0,3)时,f′(x)<0,f(x)在(0,3)为减函数.
∵当n>1时,
∴恒有
∴当n>1时,恒有不等式成立.
分析:(1)先由负数没有对数得到f(x)的定义域,求出f(x)的导函数,根据b大于 2得到导函数大于0,所以函数在定义域内单调递增;
(2)令f(x)的导函数等于0,求出此时方程的解即可得到x的值,根据d小于等于0舍去不在定义域范围中的解,得到符合定义域的解,然后利用这个解把(0,+∞)分成两段,讨论导函数的正负得到函数f(x)的增减性,根据f(x)的增减性即可得到函数的唯一极小值为这个解;
(3)由b=-6,代入f(x)的解析式中确定出f(x),并根据(2)把b的值代入求出的唯一极小值中求出值为 3,得到函数的递减区间为(0,3),根据当n>1时,,利用函数为减函数恒有 ,化简得证.
点评:此题考查学生会利用导函数的正负判断函数的单调性,并根据函数的单调性得到函数的极值,掌握导数在最值问题中的应用,是一道综合题.学生做题时应注意找出函数的定义域.第三问的突破点是令b=-6,然后利用增减性进行证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏、锡、常、镇四市高三调研数学试卷(一)(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州市高考数学一模试卷(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

同步练习册答案