精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,点上一动点,且.

1)试证明不论点在何位置,都有

2)求的最小值;

3)设平面与平面的交线为,求证:.

【答案】1)详见解析;(2;(3)详见解析.

【解析】

试题(1)先证明平面,再由平面得到;(2)将侧面和侧面沿着展开至同一平面上,利用三点共线结合余弦定理求出的最小值,即线段的长度;(3)先证平面,然后利用直线与平面平行的性质定理证明.

试题解析:(1底面是正方形,

底面

平面,

不论点在何位置都有平面

2)将侧面绕侧棱旋转到与侧面在同一平面内,如下图示,

则当三点共线时,取最小值,这时,的最小值即线段的长,

,则

中,

在三角形中,有余弦定理得:

3)连结

平面

平面平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

,对任意的恒成立,求整数的最大值;

求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆Eab0)的左焦点F1x轴的垂线交椭圆EPQ两点,点AB是椭圆E的顶点,且ABOPF2为右焦点,△PF2Q的周长为8

1)求椭圆E的方程;

2)过点F1作直线l与椭圆E交于CD两点,若△OCD的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的极值点.

)设函数,其中,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若,证明:

(2)已知,若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,F分别在线段BCAD上,,将矩形ABEF沿EF折起记折起后的矩形为MNEF,且平面平面ECDF

求证:平面MFD

,求证:

求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(一),在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC=CP,D是CP的中点,将△PAD沿AD折起,使点P到达点P′的位置得到图(二),点M为棱P′C上的动点.

(1)当M在何处时,平面ADM⊥平面P′BC,并证明;

(2)若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设过点的直线分别与曲线交于两点,直线的斜率存在,且倾斜角互补,证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分)。若直角三角形中较小的锐角为a。现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则_____________

查看答案和解析>>

同步练习册答案