精英家教网 > 高中数学 > 题目详情
18.已知f(x)=(x2-2x)ex(其中e是自然对数的底数),f'(x)为f(x)的导函数,则f'(0)的值为-2.

分析 根据函数导数公式求出函数的导数进行求解即可.

解答 解:函数的导数为f′(x)=(2x-2)ex+(x2-2x)ex=(x2-2)ex
则f'(0)═(02-2)e0=-2,
故答案为:-2.

点评 本题主要考查函数的导数的计算,根据导数的公式求出函数的导数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁UB)=(  )
A.{1,2,5,6}B.{1,2,3,4}C.{2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={1,4},B={y|y=log2x,x∈A},则A∪B=(  )
A.{1,4}B.{0,1,4}C.{0,2}D.{0,1,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,上顶点为B,若△BF1F2的周长为6,且点F1到直线BF2的距离为b.
(1)求椭圆C的方程;
(2)设A1,A2是椭圆C长轴的两个端点,点P是椭圆C上不同于A1,A2的任意一点,直线A1P交直线x=m于点M,若以MP为直径的圆过点A2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线x-2y+3=0平行,则双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-{y^2}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某石材加工厂可以把甲、乙两种类型的大理石板加工成A,B,C三种规格的小石板,每种类型的大理石板可以同时加工成三种规格小石板的块数如表所示:
板材类型ABC
甲型石板(块)124
乙型石板(块)215
某客户至少需要订购A,B两种规格的石板分别为20块和22块,至多需要C规格的石板100块,分别用x,y表示甲、乙两种类型的石板数.
(1)用x,y列出满足客户要求的数学关系式,并画出相应的平面区域;
(2)加工厂为满足客户的需求,需要加工甲、乙两种类型的石板各多少块,才能使所用石板总数最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求二面角A-BC1-C的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知O为坐标原点,F是双曲线$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则 Γ的离心率为(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线y=x+b与曲线(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3)有公共点,则实数b的取值范围是(  )
A.[1-2$\sqrt{2}$,3]B.[1-$\sqrt{2}$,3]C.[-1,1+2$\sqrt{2}$]D.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]

查看答案和解析>>

同步练习册答案