精英家教网 > 高中数学 > 题目详情
若函数f(x)=2sinωx(ω>0)在x=时取得最小值,则ω的最小值是
[     ]
A.1
B.2
C.3
D.4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、定义在R上的函数y=f(x)是增函数,且为奇函数,若实数s,t满足不等式f(s2-2s)≥-f(2t-t2),则当1≤s≤4时,3t+s的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤4时,
t
s
的取值范围是(  )
A、[-
1
2
,1)
B、[-
1
4
,1)
C、[-
1
2
,1]
D、[-
1
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

12、定义在R上的函数y=f(x)是增函数,且函数y=f(x-3)的图象关于(3,0)成中心对称,若s,t满足不等式f(s2-2s)≥-f(2t-t2),则当1≤s≤4时,3t+s的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)是减函数,y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当1≤s≤4时,
t
s
的取值范围是
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若实数s满足不等式f(s2-2s)+f(2-s)≤0,则s的取值范围是
(-∞,1]∪[2,+∞)
(-∞,1]∪[2,+∞)

查看答案和解析>>

同步练习册答案