精英家教网 > 高中数学 > 题目详情
14、定义在R上的奇函数f(x)满足:对于任意x∈R有f(x+3)=-f(x).若tanα=2,则f(15sinαcosα)的值为
0
分析:先求出函数的周期,然后根据同角三角函数关系求出15sinαcosα的值,利用周期性进行化简,最后根据奇函数的性质进行求解.
解答:解:∵对于任意x∈R有f(x+3)=-f(x).
∴f(x+6)=f(x)即T=6
∵tanα=2
∴15sinαcosα=6即f(15sinαcosα)=f(6)=f(0)
∵定义在R上的奇函数f(x)
∴f(0)=0即f(15sinαcosα)=f(6)=f(0)=0
故答案为0
点评:本题主要考查了函数奇偶性的应用,以及函数的周期性和同角三角函数间的基本关系等有关知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案