精英家教网 > 高中数学 > 题目详情

【题目】已知函数是自然对数底数),方程有四个实数根,则的取值范围为( )

A. B. C. D.

【答案】B

【解析】分析:函数,通过求导分析得到函数f(x)在(0,+∞)上为增函数,在(-∞,-1)上为增函数,在(-1,0)上为减函数,求得函数f(x)在(-∞,0)上,当x=-1时有一个最大值 ,所以,要使方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,f(x)的值一个要在(0,)内,一个在( ,+∞)内,然后运用二次函数的图象及二次方程根的关系列式求解t的取值范围.

详解:

函数

x≥0时,f′(x)=ex+xex≥0恒成立,所以f(x)在[0,+∞)上为增函数;
x<0时,f′(x)=-ex-xex=-ex(x+1),
f′(x)=0,得x=-1,当x∈(-∞,-1)时,f′(x)=-ex(x+1)>0,f(x)为增函数,
x∈(-1,0)时,f′(x)=-ex(x+1)<0,f(x)为减函数,

所以函数f(x)在(-∞,0)上有一个最大值为f(-1)= -(-1)e-1=,要使方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,
f(x)=m,则方程m2+tm+1=0应有两个不等根,且一个根在(0,)内,

一个根在( ,+∞)内,再令g(m)=m2+tm+1,因为g(0)=1>0,
则只需g( )<0,即(2+t+1<0,解得:t<
所以,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根的t的取值范围是(-∞,).

B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在用二次法求方程3x+3x-8=0在(12)内近似根的过程中,已经得到f1)<0f1.5)>0f1.25)<0,则方程的根落在区间(  )

A. B. C. D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数,是自然对数的底数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若函数内存在两个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F为抛物线的焦点,A、B是抛物线C上的两个动点,O为坐标原点.

(I)若直线AB经过焦点F,且斜率为2,求线段AB的长度|AB|;

(II)OAOB时,求证:直线AB经过定点M(4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC对应边分别为abc

1)若a=14b=40cosB=,求cosC

2)若a=3b=B=2A,求c的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月22日,在韩国平昌冬奥会短道速滑男子米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过个直道与弯道的交接口.已知某男子速滑运动员顺利通过每个交接口的概率均为,摔倒的概率均为.假定运动员只有在摔倒或到达终点时才停止滑行,现在用表示该运动员滑行最后一圈时在这一圈内已经顺利通过的交接口数.

(1)求该运动员停止滑行时恰好已顺利通过个交接口的概率;

(2)求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆系方程 ( ), 是椭圆的焦点, 是椭圆上一点,且.

(1)求的方程;

(2)为椭圆上任意一点,过且与椭圆相切的直线与椭圆交于 两点,点关于原点的对称点为,求证: 的面积为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案