精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,以椭圆的顶点为顶点的四边形的面积为,且该四边形内切圆的半径为.

1)求椭圆的方程;

2)设是过椭圆中心的任意一条弦,直线是线段的垂直平分线,若是直线与椭圆的一个交点,求面积的最小值.

【答案】1;(2.

【解析】

1)由已知条件列出的方程组,解得后得椭圆方程;

2)当不在坐标轴上时,设直线的方程为:,设

代入椭圆方程求出交点坐标,得弦长,同理得点坐标得,然后计算三角形面积,利用基本不等式得最小值.再求出直线与坐标轴重合时,三角形的面积,比较后可得最小值.

1

∴椭圆的标准方程为

2)当不在坐标轴上时,设直线的方程为:,设

同理:

(当且仅当,即进“=”成立)

当直线与坐标轴生重合时,易得

∴当且仅当时,面积的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着年北京冬奥会临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放,将引领户外用品行业市场增长.下面是年至年中国雪场滑雪人次(万人次)与同比增长率的统计图,则下面结论中不正确的是(

A.年至年,中国雪场滑雪人次逐年增加

B.年至年,中国雪场滑雪人次和同比增长率均逐年增加

C.年与年相比,中国雪场滑雪人次的同比增长率近似相等,所以同比增长人数也近似相等

D.年与年相比,中国雪场滑雪人次增长率约为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在平面五边形中,是梯形,是等边三角形.现将沿折起,连接得如图②的几何体.

1)若点的中点,求证:平面

2)若,在棱上是否存在点,使得二面角的余弦值为?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,,平面平面,点上,且


(Ⅰ)证明:平面平面

(Ⅱ)当异面直线所成角的余弦值为时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求的单调区间;

)若的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.已知函数.

1)当时,求的极值;

2)若在区间上有且只有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个正四面体和一个正四棱锥,它们的各条棱长均相等,则下列说法:

①它们的高相等;②它们的内切球半径相等;③它们的侧棱与底面所成的线面角的大小相等;④若正四面体的体积为,正四棱锥的体积为,则;⑤它们能拼成一个斜三棱柱.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案