精英家教网 > 高中数学 > 题目详情
椭圆的长轴为,短轴为,将椭圆沿y轴折成一个二面角,使得点在平面上的射影恰好为椭圆的右焦点,则该二面角的大小为(   ).
A.75°B.60°  C.45°D.30°
B

试题分析:易知。易得为二面角的一个平面角,在Rt,中,,所以二面角的大小为60°。
点评:二面角求解的一般步骤: 一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形找二面角的平面角。 二、“证”:证明所找出的角就是该二面角的平面角。三、“算”:计算出该平面角。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面是正方形.已知.

(Ⅰ)求证:
(Ⅱ)求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l垂直平面a,垂足为O.在矩形ABCD中AD=1,AB=2,若点A在l上移动,点 B在平面a上移动,则O、D两点间的最大距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)若,且异面直线的夹角为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,边上的高,,沿翻折,使得,得到几何体

(1)求证:
(2)求与平面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列命题中不正确的是(     )
A.若,则
B.若,则
C.若,则
D.若所成的角相等,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果对于空间任意n(n≥2)条直线总存在一个平面α,使得这n条直线与平面α所成的角均相等,那么这样的n(  )
A.最大值为3B.最大值为4 C.最大值为5D.不存在最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线及平面,它们具备下列哪组条件时,有成立(  )
A.B.
C.所成的角相等D.

查看答案和解析>>

同步练习册答案