精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的前n项和Sn=3n2-2n,则使$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$<$\frac{1}{20}$log8m对所有n∈N*都成立的正整数m的最小值为210

分析 当n≥2时通过Sn=3n2-2n与Sn-1=3(n-1)2-2(n-1)作差、整理可知an=6n-5,裂项可知$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{6}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$),进而并项相加可知问题等价于log8m>$\frac{20n}{6n+1}$对所有n∈N*都成立,进而计算可得结论.

解答 解:∵Sn=3n2-2n,
∴当n≥2时,Sn-1=3(n-1)2-2(n-1),
两式相减,得:an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5,
又∵a1=3-2=1满足上式,
∴an=6n-5,
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(6n-5)(6n+1)}$=$\frac{1}{6}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$),
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{6}$(1-$\frac{1}{7}$+$\frac{1}{7}$-$\frac{1}{13}$+…+$\frac{1}{6n-5}$-$\frac{1}{6n+1}$)=$\frac{1}{6}$(1-$\frac{1}{6n+1}$)=$\frac{n}{6n+1}$,
∵$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$<$\frac{1}{20}$log8m对所有n∈N*都成立,
∴$\frac{n}{6n+1}$<$\frac{1}{20}$log8m对所有n∈N*都成立,
整理得:log8m>$\frac{20n}{6n+1}$对所有n∈N*都成立,
∴log8m≥$\frac{20}{6}$=$\frac{10}{3}$,
∴m≥${8}^{\frac{10}{3}}$=210
故答案为:210

点评 本题考查数列的通项及前n项和,考查运算求解能力,裂项求和是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知直线l过点M(-5,-5)且和圆C:x2+y2+4y-21=0相交于A,B;若OA⊥OB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|0<x<1},B={x|0<x<3},那么“m∈A”是“m∈B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合M={x|$\frac{x+1}{x-1}$≥1},集合N={x∈N|2x+3>0},则(∁RM)∩N={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=\left\{\begin{array}{l}{2^{x+1}},x≤0\\{log_2}x,x>0\end{array}\right.$,若关于x的方程[f(x)]2-af(x)=0恰有三个不同的实数解,则实数a的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+2x,\;\;\;x<0\\ 0,\;\;\;\;\;\;\;\;\;\;\;x=0\\-{x^2}+2x,\;x>0\end{array}$.
(1)在所给的坐标系中画出该函数的图象;
(2)由图象写出的单调区间,并指出函数f(x)在区间[-2,2]上的最大值和最小值;
(3)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示曲线C,有下列命题①若曲线C为椭圆,则1<t<4,②若曲线C为双曲线,则t<1或t>4,③曲线C不可能是圆,④若曲线C表示椭圆且长轴在x轴,则$1<t<\frac{3}{2}$,则以上命题正确的有(  )
A.2个B.3个C.1个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=cos($\frac{k}{4}$x+$\frac{2}{3}$)的周期不大于2,则正整数k的最小值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且4Sn=an+1(n∈N*).
(Ⅰ)求a1,a2
(Ⅱ)设bn=log3|an|,求数列{bn}的前n项和为Tn

查看答案和解析>>

同步练习册答案