【题目】如图1,四边形为直角梯形,,,,,为上一点,为的中点,且,,现将梯形沿折叠(如图2),使平面平面.
(1)求证:平面平面.
(2)能否在边上找到一点(端点除外)使平面与平面所成角的余弦值为?若存在,试确定点的位置,若不存在,请说明理由.
【答案】(1)证明见解析.(2)存在点,为线段中点
【解析】
(1)根据线面垂直的判定定理和面面垂直的判定定理,即可证得平面平面;
(2)以为坐标原点建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.
(1)在直角梯形中,作于于,连接,
则,,则,,
则,
在直角中,可得,
则,
所以,
故,且折叠后与位置关系不变.
又因为平面平面,且平面平面,
所以平面,
因为平面,所以平面平面.
(2)在中,由,为的中点,可得.
又因为平面平面,且平面平面,
所以平面,则以为坐标原点建立如图所示的空间直角坐标系,
则,,,
则,,
设平面的法向量为,则 ,
令,可得平面的法向量为,
假设存在点使平面与平面所成角的余弦值为,且(),
∵,∴,故,
又,∴,
又由,
设平面的法向量为,可得,
令得,
∴,解得,
因此存在点且为线段中点时使平面与平面所成角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知抛物线:的焦点为,抛物线上的点到准线的最小距离为2.
(1)求抛物线的方程;
(2)若过点作互相垂直的两条直线,,与抛物线交于,两点,与抛物线交于,两点,,分别为弦,的中点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的列联表.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)求列联表中的,的值;
男性 | 女性 | 合计 | |
反感 | 10 | ||
不反感 | 8 | ||
合计 | 30 |
(2)根据列联表中的数据,判断是否有95%把握认为反感“中国式过马路”与性别有关?
临界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )
A. 2012年至2016年我国新闻出版业和数字出版业营收均逐年增加
B. 2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍
C. 2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍
D. 2016年我国数字出版营收占新闻出版营收的比例未超过三分之一
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的一个焦点为,点在C上.
(1)求椭圆C的方程;
(2)过点且斜率不为0的直线l与椭圆C相交于M,N两点,椭圆长轴的两个端点分别为,,与相交于点Q,求证:点Q在某条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆G:的右焦点为F,过F的直线l交椭圆于A、B两点,直线与l不与坐标轴平行,若AB的中点为N,O为坐标原点,直线ON交直线x=3于点M.
(1)求证:MF⊥l;
(2)求的最大值,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com