(本小题满分12分)
如图,正三棱柱ABC—A1B1C1的底面边长为a,点M在边 BC上,△AMC1是以点M为直角顶点的等腰直角三角形。
(Ⅰ)求证点M为边BC的中点;
(Ⅱ)求点C到平面AMC1的距离;
(Ⅲ)求二面角M—AC1—C的大小。
(Ⅰ)∵△AMC1为以点M为直角顶点的等腰直角三角形,
∴AM⊥C1M且AM=C1M
∵三棱柱ABC—A1B1C1,∴CC1⊥底面ABC
∴C1M在底面内射影为CM,AM⊥CM。
∵底面ABC为边长为a的正三角形,
∴点M为BC边的中点 --------------------4分
(Ⅱ)过点C作CH⊥MC1,由(Ⅰ)知AM⊥C1M且AM⊥CM,
∴AM⊥平面C1CM ∵CH在平面C1CM内,∴CH⊥AM,
∴CH⊥平面C1AM
由(Ⅰ)知,
∴∴
∴点C到平面AMC1的距离为底面边长为-------------------8分
(Ⅲ)过点C作CI⊥AC1于I,连HI,∵CH⊥平面C1AM,
∴HI为CI在平面C1AM内的射影,
∴HI⊥AC1,∠CIH是二面角M—AC1—C的平面角,
在直角三角形ACC1中
,
∴∠CIH=45°, ∴二面角M—AC1—C的大小为45°
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com