精英家教网 > 高中数学 > 题目详情
14.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足$∠MFN=\frac{2π}{3}$,弦MN的中点P到直线l:$y=-\frac{1}{16}$的距离记为d,若|MN|2=λ•d2,则λ的最小值为(  )
A.3B.$\sqrt{3}$C.$1+\sqrt{3}$D.4

分析 求得抛物线的焦点和准线方程,设|MF|=a,|NF|=b,由∠MFN=120°,运用余弦定理可得|MN|,运用抛物线的定义和中位线定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),运用基本不等式计算即可得到所求最小值.

解答 解:抛物线y=4x2的焦点F(0,$\frac{1}{16}$),准线为y=-$\frac{1}{16}$,
设|MF|=a,|NF|=b,由∠MFN=120°,
可得|MN|2=|MF|2+|NF|2-2|MF|•|NF|•cos∠MFN=a2+b2+ab,
由抛物线的定义可得M到准线的距离为|MF|,N到准线的距离为|NF|,
由梯形的中位线定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),
由|MN|2=λ•d2,可得$\frac{1}{4}$λ=1-$\frac{ab}{(a+b)^{2}}$≥1-$\frac{1}{4}$=$\frac{3}{4}$,
可得λ≥3,当且仅当a=b时,取得最小值3,
故选:A

点评 本题考查抛物线的定义、方程和性质,考查余弦定理和基本不等式的运用:求最值,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4x2-kx-8,x∈[5,20]
(Ⅰ)若函数f(x)在[5,20]上具有单调性,求实数k的取值范围;
(Ⅱ)若函数f(x)在[5,20]上恒大于零,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A、B、C的对边分别为a、b、c,若  acosB+bcosA=csinA,则△ABC的形状为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a>2,函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x+x-3(x>0)}\\{x-(\frac{1}{a})^{x}+3(x≤0)}\end{array}\right.$,若f(x)有两个零点分别为x1,x2,则(  )
A.?a>2,x1+x2=0B.?a>2,x1+x2=1C.?a>2,|x1-x2|=2D.?a>2,|x1-x2|=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是m≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x=3n+1,n∈N},B={6,7,8,9,10,11},C=A∩B,则集合C的子集个数为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z=$\frac{i}{1+2i}$的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知复数z=$\frac{3i+1}{1-i}$,则z的虚部是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题“?a,b∈R,如果ab>0,则a>0”,则它的逆否命题是(  )
A.?a,b∈R,如果ab<0,则a<0B.?a,b∈R,如果a≤0,则ab≤0
C.?a,b∈R,如果ab<0,则a<0D.?a,b∈R,如果a≤0,则ab≤0

查看答案和解析>>

同步练习册答案