精英家教网 > 高中数学 > 题目详情
a
b
为非零向量,|
b
|=2|
a
|,两组向量
x1
x2
x3
x4
y1
y2
y3
y4
均由2个
a
和2个
b
排列而成,若
x1
y1
+
x2
y2
+
x3
y3
+
x4
y4
所有可能取值中的最小值为4|
a
|2,则
a
b
的夹角为
 
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:结合数量积组合情况,分类讨论,即可得出结论.
解答: 解:由题意,设
a
b
的夹角为θ
分类讨论可得
x1
y1
+
x2
y2
+
x3
y3
+
x4
y4
=
a
a
+
a
a
+
b
b
+
b
b
=10|
a
|2,不满足条件,
x1
y1
+
x2
y2
+
x3
y3
+
x4
y4
=
a
a
+
a
b
+
a
b
+
b
b
=5|
a
|2+4|
a
|2cosθ,不满足条件,
x1
y1
+
x2
y2
+
x3
y3
+
x4
y4
=
a
b
+
a
b
+
a
b
+
a
b
=4
a
b
=8|
a
|2cosθ=4|
a
|2,此时cosθ=
1
2

a
b
的夹角为θ=60°,
故答案为:60°
点评:本题考查向量的数量积公式,考查学生的计算能力,注意要进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z的共轭复数是
2-2i
1+i
,则复数z2+
.
z
+3等于(  )
A、-2iB、3-i
C、1+2iD、-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线 AB2与直线 B1F的交点恰在椭圆的右准线上,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用黑、蓝2种颜色给如图所示的笑脸涂色,每个图形只能涂一种颜色,则两只眼睛(即图中A、B所示的区域)涂同种颜色而鼻子和嘴巴涂不同颜色的概率为(  )
A、
1
8
B、
1
4
C、
1
2
D、
3
8

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:质数序列2,3,5,7,11,13,17,19…是无限的.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(-2,1),|
b
|=|
a
|,且
a
b
互相垂直,则
b
的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn,有Sn=1×2+3×22+5×23+…+(2n-1)•2n
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2cos(
π
2
+x),-1),
OQ
=(-sin(
π
2
-x),cos2x),f(x)=
OP
.
OQ
.若a,b,c分别是锐角△ABC中角A,B,C的对边,且满足f(A)=1,b+c=5+3
2
.a=
13
,则△ABC的面积为
 
.•

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下,甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85.
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)竞赛成绩不低于85分,则该次成绩为优秀,若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中优秀的次数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

同步练习册答案