精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=ax2+ax1aR).

)当a1时,求fx)>0的解集;

)对于任意xR,不等式fx)<0恒成立,求a的取值范围;

)求关于x的不等式fx)<0的解集.

【答案】{x|xx};()(﹣40];()答案不唯一,详见解析.

【解析】

)将a1代入,解一元二次不等式即可求解.

(Ⅱ)讨论a0,根据二次函数的图象与性质即可求解.

(Ⅲ)讨论的取值,根据含参的一元二次不等式的解法即可求解.

)当a1时,fx)=x2+x10

解得xx

fx)>0的解集为{x|xx}

)∵fx)=ax2+ax1aR).

对于任意xR,不等式fx)<0恒成立,

a0

解得﹣4a≤0

a的取值范围是(﹣40]

)(ia0时,fx)=﹣10

不等式的解集是R

iia0时,fx)=ax2+ax1

△=a2+4a0,令fx)=0

解得:x

fx)<0的解集是:(),

iiia0时,△=a2+4a

a<﹣4时,△>0

fx)=0,解得:x

fx)<0的解集是:(﹣)∪(+∞),

a=﹣4时,△=0fx)<0的解集是{x|x}

③﹣4a0时,△<0

fx)<0的解集是R

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ),解不等式;

(Ⅱ),对任意都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线被圆截得的弦长为.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 的左、右焦点分别为作倾斜角为的直线与轴和双曲线的右支分别交于两点,若点平分线段则该双曲线的离心率是

A. B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱ABCA1B1C1的侧棱垂直于底面,且底面是边长为2的正三角形,AA13,点DEFG分别是所在棱的中点.

(Ⅰ)证明:平面BEF∥平面DA1C1

(Ⅱ)求三棱柱ABCA1B1C1夹在平面BEF和平面DA1C1之间的部分的体积.

附:台体的体积,其中SS分别是上、下底面面积,h是台体的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中的零点:且恒成立,在区间上有最小值无最大值,则的最大值是(

A. 11B. 13C. 15D. 17

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.某环保人士从当地某年的AQI记录数据中,随机抽取了15天的AQI数据,用如图所示的茎叶图记录.根据该统计数据,估计此地该年空气质量为优或良的天数约为__________.(该年为366天)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)求曲线在点处的切线方程;

(Ⅱ)当时,求证:函数存在极小值;

(Ⅲ)请直接写出函数的零点个数.

查看答案和解析>>

同步练习册答案