精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点(点均在第一象限),且直线的斜率成等比数列,证明:直线的斜率为定值.

【答案】(1) ;(2)见解析.

【解析】试题分析

(1)根据椭圆的离心率和所过的点得到关于的方程组,解得后可得椭圆的方程.(2)由题意设直线的方程为,与椭圆方程联立后消元可得二次方程,根据二次方程根与系数的关系可得直线的斜率,再根据题意可得,根据此式可求得,为定值.

试题解析

(1)由题意可得,解得

故椭圆的方程为

(2)由题意可知直线的斜率存在且不为0,设直线的方程为

,消去整理得

∵直线与椭圆交于两点,

设点的坐标分别为

∵直线的斜率成等比数列,

整理得

,所以

结合图象可知,故直线的斜率为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆 =1(a>b>0)的离心率为 ,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.

(1)若直线l的斜率为 ,求 的值;
(2)若 ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题,其中真命题的个数是( )

①若是假命题,则是真命题;

②命题,则为真命题;

③若,则

④直线与双曲线交于,两点,若,则这样的直线有3条;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,D为AB的中点.

(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,D为AB的中点.

(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:4﹣2:矩阵与变换
若圆C:x2+y2=1在矩阵 (a>0,b>0)对应的变换下变成椭圆E: ,求矩阵A的逆矩阵A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂要建造一个长方体的无盖箱子,其容积为48 m3,高为3 m,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为(  )

A. 900 B. 840

C. 818 D. 816

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 = (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 (
A.5
B.4
C.9
D.5+4

查看答案和解析>>

同步练习册答案