精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.

(1)若D为线段AC的中点,求证:AC⊥平面PDO;

(2)求三棱锥P-ABC体积的最大值;

(3)若,点E在线段PB上,求CE+OE的最小值.

【答案】(1)见解析;(2);(3)

【解析】

1)证明AC⊥DO,PO⊥AC,再证明AC⊥平面PDO;(2)当CO⊥AB时,C到AB的距离最大,且最大值为1,再求三棱锥P-ABC体积的最大值;(3)先证明PB=PC=BC,在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,当O,E,C′共线时,CE+OE取得最小值.再求其最小值.

(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.

又PO垂直于圆O所在的平面,所以PO⊥AC.

因为DO∩PO=O,所以AC⊥平面PDO.

(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.

又AB=2,所以△ABC面积的最大值为.

又因为三棱锥P-ABC的高PO=1,

故三棱锥P-ABC体积的最大值为.

(3)解:

在△POB中,PO=OB=1,∠POB=90°,

所以.

同理,所以PB=PC=BC.

在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.

当O,E,C′共线时,CE+OE取得最小值.

又因为OP=OB,,所以垂直平分PB,即E为PB的中点.

从而

即CE+OE的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知=12sin(x+)cosx-3,x∈[o,].

(1)求的最大值、最小值;

(Ⅱ)CD为△ABC的内角平分线,已知AC=max,BC=,CD=2,求∠C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮.某大学社团调查了该校文学院300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内),并按时间(单位:分钟)将学生分成六个组:,经统计得到了如图所

示的频率分布直方图

(Ⅰ)求频率分布直方图中的值,并估计该校文学院的学生每天诵读诗词的时间的平均数;

(Ⅱ)若两个同学诵读诗词的时间满足,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题的序号有__________.(写出所有真命题的序号)①若,则“”是“”成立的充分不必要条件;②命题“使得”的否定是 “均有”;③命题“若,则”的否命题是“若,则”;④函数在区间上有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,嫦娥一号探月卫星沿地月转移轨道飞向月球,在月球附近一点变轨进入以月球球心为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在点第三次变轨进入以为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道Ⅰ和Ⅱ的中心与在同一直线上,设椭圆轨道Ⅰ和Ⅱ的长半轴长分别为,半焦距分别为,则以下四个关系①,②,③,④中正确的是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为2的正方体在平面上的射影的面积最大值等于________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.

1)求取球2次即终止的概率;

2)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设,若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面平面,△ABC为等腰三角形,的中点,的中点,且

(Ⅰ)证明:平面

(Ⅱ)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案