精英家教网 > 高中数学 > 题目详情
7.求下列函数的反函数.
(1)y=log6x;
(2)y=2-x+1.

分析 (1)(2)由已知解为用y表示为x,然后把x与y互换,注意定义域.

解答 解:(1)y=log6x(x>0),化为x=6y,把x与y互换可得:y=6x,(x∈R).
(2)y=2-x+1(y>1),化为x=$lo{g}_{\frac{1}{2}}(y-1)$,把x与y互换可得:y=$lo{g}_{\frac{1}{2}}(x-1)$,(x>1).

点评 本题考查了反函数的求法,指数式与对数式的互化,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品12千克.
(Ⅰ)求a的值;
(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出此时的最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的奇函数g(x),设函数f(x)=$\frac{(x+1)^{2}+g(x)}{{x}^{2}+1}$的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求实数k的值.
(2)若f(1)<0,试判断并证明函数f(x)的单调性;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在区间[1,∞)上的最小值为-2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,是奇函数的是(  )
A.y=-|x|B.y=$\frac{1}{x}$C.y=3-xD.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{3}^{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)是定义在R上的函数,对定义域内的任意x,y都有f(x+y)=f(x)+f(y),且f(-1)=2.当x>0时,f(x)<0.
(1)判断f(x)的奇偶性;
(2)求f(x)在x∈[-3,5]时的最大值和最小值;
(3)若f(m)+$\frac{1}{2}$f(9)>$\frac{1}{2}$f(m2)+f(3),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.正三棱台A1B1C1-ABC中,A1B1:AB=1:2,截面A1BC与ABC的夹角为30°,求:
(1)截面A1BC与底面ABC的面积之比;
(2)三棱台被截面A1BC分成的上下两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD,底面ABCD为平行四边形,E、F分别为 PD、BC的中点,面PAB∩面PCD=l.
(1)证明:l∥AB;
(2)(文)证明:EF∥平面PAB.
(3)(理)在线段PD上是否存在一点G,使FG∥面ABE?若存在,求出$\frac{PG}{GD}$的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案