精英家教网 > 高中数学 > 题目详情

【题目】定义在(0,+∞)上的函数f(x)的导数满足x2<1,则下列不等式中一定成立的是(  )

A.f()+1<f()<f()﹣1B.f()+1<f()<f()﹣1

C.f()﹣1<f()<f()+1D.f()﹣1<f()<f()+1

【答案】D

【解析】

构造函数gx)=fx,利用导数可知函数在(0+∞)上是减函数,则答案可求.

x2f′(x)<1,得f′(x,即得f′(x0

gx)=fx,则g′(x)=f′(x0

gx)=fx在(0+∞)上为单调减函数,

f+2f+3f+4

f)<f+1,即f)﹣1f);

f)<f+1

综上,f)﹣1f)<f+1

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.不过原点的直线与椭圆相交于两点,设直线,直线,直线的斜率分别为,且成等比数列.

(1)求的值;

(2)若点在椭圆上,满足的直线是否存在?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点且离心率为.

(1)求椭圆的方程;

(2)设分别为椭圆的左、右焦点,不经过的直线与椭圆交于两个不同的点如果直线的斜率依次成等差数列,求焦点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:

(Ⅰ)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?

(Ⅱ)如果语文和数学两科都特别优秀的共有3人.

(ⅰ)从(Ⅰ)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.

(ⅱ)根据以上数据,完成列联表并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.

语文特别优秀

语文不特别优秀

合计

数学特别优秀

数学不特别优秀

合计

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①一个命题的否命题为真,则它的逆命题一定为真;

②若pq为假命题,则p,q均为假命题;

③命题x2 -3x+2=0,则x=2”的否命题为x2 -3x+2=0,x≠2”;

a2+b2=0,则a, b全为0”的逆否命题是a, b全不为0,则a2+b2≠0”其中正确的命题序号是( )

A.B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某铁制零件由一个正四棱柱和一个球组成,已知正四棱柱底面边长与球的直径均为1cm,正四棱柱的高为2cm.现有这种零件一盒共50kg,取铁的密度为.

1)估计有多少个这样的零件;

2)如果要给这盒零件的每个零件表面涂上一种特殊的材料,则需要能涂多少平方厘米的材料(球与棱柱接口处的面积不计,结果精确到)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的动点,过点的垂线,线段的中垂线交于点的轨迹为.

(1)求轨迹的方程;

(2)过且与坐标轴不垂直的直线交曲线两点,若以线段为直径的圆与直线相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中选人,求恰好有名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】校园准备绿化一块直径为的半圆形空地,点在半圆圆弧上,外的地方种草,的内接正方形为一水池(边上),其余地方种花,若 ,设的面积为,正方形面积为

1)用表示

2)当固定,变化时,求最小值及此时的角

查看答案和解析>>

同步练习册答案