精英家教网 > 高中数学 > 题目详情
7.不等式$\frac{{\sqrt{x+1}}}{x-6}≤0$的解为[-1,6).

分析 由题意可知$\left\{\begin{array}{l}{x+1≥0}\\{x-6<0}\end{array}\right.$,解得即可.

解答 解:$\frac{{\sqrt{x+1}}}{x-6}≤0$,
∴$\left\{\begin{array}{l}{x+1≥0}\\{x-6<0}\end{array}\right.$,
解得-1≤x<6,
故不等式的解集为[-1,6),
故答案为:[-1,6).

点评 本题考查了不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.给定如下命题:
①若命题p:?x≥0,x2+x≥0,则?p:?x0<0,x02+x0<0
②若变量x,y线性相关,其回归方程为$\widehat{y}$+x=2,则x,y正相关
③在△ABC中,BC=2,AC=3,∠B=$\frac{π}{3}$,则△ABC是锐角三角形
④将长为8的铁丝围成一个矩形框,则该矩形面积大于3的概率为$\frac{1}{2}$
⑤已知a>b>c>0,且2b>a+c,则$\frac{b}{a-b}>\frac{c}{b-c}$
其中正确命题是③④⑤(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在直角坐标平面xOy内,一条光线从点(2,4)射出,经直线x+y-1=0反射后,经过点(3,2),则反射光线的方程为x-26y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若第一象限内的点A(x、y)落在经过点(6,-2)且斜率是-$\frac{2}{3}$的直线上,则log${\;}_{\frac{3}{2}}$x+log${\;}_{\frac{3}{2}}$y有(  )
A.最大值1B.最大值$\frac{3}{2}$C.最小值$\frac{3}{2}$D.最小值1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=x•|x-1|+m
(1)设函数g(x)=(2-m)x+3m,若方程f(x)=g(x)在(0,1]上有且仅有一个实根,求实数m的取值范围;
(2)当m>1时,求函数y=f(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.据算法语句(如图)输出的结果是(  )
A.3B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对定义在[0,1]上的函数f(x),如果同时满足以下三个条件:
①对任意x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,有f(x1+x2)≥f(x1)+f(x2)成立.
则称函数f(x)为理想函数.
(1)判断g(x)=2x-1(x∈[0,1])是否为理想函数,并说明理由;
(2)若f(x)为理想函数,求f(x)的最小值和最大值;
(3)若f(x)为理想函数,假设存在x0∈[0,1]满足f[f(x0)]=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}$-y2=1上的一点,F1、F2是C上的两个焦点,若∠F1MF2为钝角,则y0的取值范围是$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点(-4,3),则sinα=$\frac{3}{5}$,cosα=-$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案