精英家教网 > 高中数学 > 题目详情
13.命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立; 命题q:函数f(x)=(3-2a)x在R上是增函数.若p或q为真,p且q为假,则实数a的取值范围为(-∞,-2]∪[1,2).

分析 根据不等式的恒成立的等价条件及幂函数的单调性分别求得命题命题p、q为真时a的范围,再利用复合命题真值表判断:若p或q为真,p且q为假,则命题p、q一真一假,分别求出当p真q假时和当p假q真时a的范围,再求并集.

解答 解:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,
则△=4a2-16<0,
即a2<4,解得-2<a<2;
命题q为真命题,则3-2a>1⇒a<1,
根据复合命题真值表知:若p或q为真,p且q为假,则命题p、q一真一假,
当p真q假时,$\left\{\begin{array}{l}{-2<a<2}\\{a≥1}\end{array}\right.$,则1≤a<2;
当p假q真时,$\left\{\begin{array}{l}{a≥2或a≤-2}\\{a<1}\end{array}\right.$,则a≤-2,
∴实数a的取值范围是a≤-2或1≤a<2,
故答案为:(-∞,-2]∪[1,2)

点评 本题借助考查复合命题的真假判断,考查了不等式的恒成立问题及幂函数的单调性,熟练掌握不等式的恒成立的等价条件及幂函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=1+logax,(a>0,a≠1),若y=f-1(x)过点(3,4),则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,x≤0\\{log_2}x{,^{\;}}^{\;}x>0\end{array}\right.$,则$f(f(\frac{1}{2}))$=(  )
A.0B.$-\frac{1}{2}$C.1D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)${log_5}35-2{log_5}\frac{7}{3}+{log_5}7-{log_5}1.8-{5^{{{log}_5}2}}$.
(2)已知α∈(0,π),$sinα+cosα=\frac{1}{5}$,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{1}{x}$-log2x,在下列区间中,函数f(x)有零点的是(  )
A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:方程x2-mx+1=0无实数解;命题q:椭圆$\frac{x^2}{m}+{y^2}=1$焦点在x轴上;若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的奇函数f(x)满足
①对任意的x都有f(x+4)=f(x)成立;
②当x∈[0,2]时,f(x)=2-2|x-1|,
则$f(x)=\frac{1}{|x|}$在[-4,4]上根的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且向量$\overrightarrow a=(n,S_n),\overrightarrow b=(4,n+3)$共线;等比数列{bn}中b1=a1,b2=a3
(1)求证:数列{an}是等差数列;
(2)若数列{cn}的通项公式为cn=$\frac{1}{{n{a_n}}}+n{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.复数z=(m-1)+(m2+1)i(m>2)的对应点的轨迹方程为y=(x+1)2+1,x>1.

查看答案和解析>>

同步练习册答案