精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-x(x∈R,a、b是常数,a≠0),且当x=1和x=2时,函数f(x)取得极值.(I)求函数f(x)的解析式;
(Ⅱ)若曲线y=f(x)与g(x)=有两个不同的交点,求实数m的取值范围.
(I)  (Ⅱ) 0≤m<

试题分析:解:(1),依题意,,即
解得,经检验符合题意。∴ 
(2) 曲线y=f(x)与g(x)两个不同的交点,
在[-2,0]有两个不同的实数解 
设φ(x)= ,则, 
,得x= 4或x= -1,∵x∈[-2,0],
∴当x(-2,-1)时,,于是φ(x)在[-2,-1]上递增;
当x(-1,0)时,,于是φ(x)在[-1,0]上递减.   
依题意有  
解得0≤m< 
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

的值为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数               

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数,下列说法正确的是       .
(1)函数的图像关于直线对称;
(2)的图像关于直线对称;
(3)两函数的图像一共有10个交点;
(4)两函数图像的所有交点的横坐标之和等于30;
(5)两函数图像的所有交点的横坐标之和等于24.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器。已知喷水器的喷水区域是半径为5m的圆。问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数处取得极大值,求函数的单调区间
(2)若对任意实数,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(1)若函数在区间内是减函数,求实数的取值范围;
(2)求函数在区间上的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(Ⅰ)求的极值;
(Ⅱ)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案